Cargando…
Effect of Face Blurring on Human Pose Estimation: Ensuring Subject Privacy for Medical and Occupational Health Applications
The face blurring of images plays a key role in protecting privacy. However, in computer vision, especially for the human pose estimation task, machine-learning models are currently trained, validated, and tested on original datasets without face blurring. Additionally, the accuracy of human pose es...
Autores principales: | Jiang, Jindong, Skalli, Wafa, Siadat, Ali, Gajny, Laurent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739378/ https://www.ncbi.nlm.nih.gov/pubmed/36502076 http://dx.doi.org/10.3390/s22239376 |
Ejemplares similares
-
A Privacy-Preserving Multi-Task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition
por: Zhang, Chen, et al.
Publicado: (2020) -
Using a Blur Metric to Estimate Linear Motion Blur Parameters
por: Askari Javaran, Taiebeh, et al.
Publicado: (2021) -
Motion blur invariant for estimating motion parameters of medical ultrasound images
por: Honarvar Shakibaei Asli, Barmak, et al.
Publicado: (2021) -
Age Estimation of Faces in Videos Using Head Pose Estimation and Convolutional Neural Networks
por: Zhang, Beichen, et al.
Publicado: (2022) -
Face and Body-Based Human Recognition by GAN-Based Blur Restoration
por: Koo, Ja Hyung, et al.
Publicado: (2020)