Cargando…

Seed Layer Optimisation for Ultra-Thin Sb(2)Se(3) Solar Cells on TiO(2) by Vapour Transport Deposition

Antimony selenide (Sb(2)Se(3)) material has drawn considerable attention as an Earth-abundant and non-toxic photovoltaic absorber. The power conversion efficiency of Sb(2)Se(3)-based solar cells increased from less than 2% to over 10% in a decade. Different deposition methods were implemented to syn...

Descripción completa

Detalles Bibliográficos
Autores principales: Juškėnas, Remigijus, Naujokaitis, Arnas, Drabavičius, Audrius, Pakštas, Vidas, Vainauskas, Deividas, Kondrotas, Rokas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739395/
https://www.ncbi.nlm.nih.gov/pubmed/36499853
http://dx.doi.org/10.3390/ma15238356
_version_ 1784847794664636416
author Juškėnas, Remigijus
Naujokaitis, Arnas
Drabavičius, Audrius
Pakštas, Vidas
Vainauskas, Deividas
Kondrotas, Rokas
author_facet Juškėnas, Remigijus
Naujokaitis, Arnas
Drabavičius, Audrius
Pakštas, Vidas
Vainauskas, Deividas
Kondrotas, Rokas
author_sort Juškėnas, Remigijus
collection PubMed
description Antimony selenide (Sb(2)Se(3)) material has drawn considerable attention as an Earth-abundant and non-toxic photovoltaic absorber. The power conversion efficiency of Sb(2)Se(3)-based solar cells increased from less than 2% to over 10% in a decade. Different deposition methods were implemented to synthesize Sb(2)Se(3) thin films, and various device structures were tested. In search of a more environmentally friendly device composition, the common CdS buffer layer is being replaced with oxides. It was identified that on oxide substrates such as TiO(2) using vacuum-based close-space deposition methods, an intermediate deposition step was required to produce high-quality thin films. However, little or no investigation was carried out using another very successful vacuum deposition approach in Sb(2)Se(3) technology called vapour transport deposition (VTD). In this work, we present optimized VTD process conditions to achieve compact, pinhole-free, ultra-thin (<400 nm) Sb(2)Se(3) absorber layers. Three process steps were designed to first deposit the seed layer, then anneal it and, at the final stage, deposit a complete Sb(2)Se(3) absorber. Fabricated solar cells using absorbers as thin as 400 nm generated a short-circuit current density over 30 mA/cm(2), which demonstrates both the very high absorption capabilities of Sb(2)Se(3) material and the prospects for ultra-thin solar cell application.
format Online
Article
Text
id pubmed-9739395
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97393952022-12-11 Seed Layer Optimisation for Ultra-Thin Sb(2)Se(3) Solar Cells on TiO(2) by Vapour Transport Deposition Juškėnas, Remigijus Naujokaitis, Arnas Drabavičius, Audrius Pakštas, Vidas Vainauskas, Deividas Kondrotas, Rokas Materials (Basel) Article Antimony selenide (Sb(2)Se(3)) material has drawn considerable attention as an Earth-abundant and non-toxic photovoltaic absorber. The power conversion efficiency of Sb(2)Se(3)-based solar cells increased from less than 2% to over 10% in a decade. Different deposition methods were implemented to synthesize Sb(2)Se(3) thin films, and various device structures were tested. In search of a more environmentally friendly device composition, the common CdS buffer layer is being replaced with oxides. It was identified that on oxide substrates such as TiO(2) using vacuum-based close-space deposition methods, an intermediate deposition step was required to produce high-quality thin films. However, little or no investigation was carried out using another very successful vacuum deposition approach in Sb(2)Se(3) technology called vapour transport deposition (VTD). In this work, we present optimized VTD process conditions to achieve compact, pinhole-free, ultra-thin (<400 nm) Sb(2)Se(3) absorber layers. Three process steps were designed to first deposit the seed layer, then anneal it and, at the final stage, deposit a complete Sb(2)Se(3) absorber. Fabricated solar cells using absorbers as thin as 400 nm generated a short-circuit current density over 30 mA/cm(2), which demonstrates both the very high absorption capabilities of Sb(2)Se(3) material and the prospects for ultra-thin solar cell application. MDPI 2022-11-24 /pmc/articles/PMC9739395/ /pubmed/36499853 http://dx.doi.org/10.3390/ma15238356 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Juškėnas, Remigijus
Naujokaitis, Arnas
Drabavičius, Audrius
Pakštas, Vidas
Vainauskas, Deividas
Kondrotas, Rokas
Seed Layer Optimisation for Ultra-Thin Sb(2)Se(3) Solar Cells on TiO(2) by Vapour Transport Deposition
title Seed Layer Optimisation for Ultra-Thin Sb(2)Se(3) Solar Cells on TiO(2) by Vapour Transport Deposition
title_full Seed Layer Optimisation for Ultra-Thin Sb(2)Se(3) Solar Cells on TiO(2) by Vapour Transport Deposition
title_fullStr Seed Layer Optimisation for Ultra-Thin Sb(2)Se(3) Solar Cells on TiO(2) by Vapour Transport Deposition
title_full_unstemmed Seed Layer Optimisation for Ultra-Thin Sb(2)Se(3) Solar Cells on TiO(2) by Vapour Transport Deposition
title_short Seed Layer Optimisation for Ultra-Thin Sb(2)Se(3) Solar Cells on TiO(2) by Vapour Transport Deposition
title_sort seed layer optimisation for ultra-thin sb(2)se(3) solar cells on tio(2) by vapour transport deposition
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739395/
https://www.ncbi.nlm.nih.gov/pubmed/36499853
http://dx.doi.org/10.3390/ma15238356
work_keys_str_mv AT juskenasremigijus seedlayeroptimisationforultrathinsb2se3solarcellsontio2byvapourtransportdeposition
AT naujokaitisarnas seedlayeroptimisationforultrathinsb2se3solarcellsontio2byvapourtransportdeposition
AT drabaviciusaudrius seedlayeroptimisationforultrathinsb2se3solarcellsontio2byvapourtransportdeposition
AT pakstasvidas seedlayeroptimisationforultrathinsb2se3solarcellsontio2byvapourtransportdeposition
AT vainauskasdeividas seedlayeroptimisationforultrathinsb2se3solarcellsontio2byvapourtransportdeposition
AT kondrotasrokas seedlayeroptimisationforultrathinsb2se3solarcellsontio2byvapourtransportdeposition