Cargando…

Investigation of the Suitability of a Commercial Radiation Sensor for Pretherapy Dosimetry of Radioiodine Treatment Patients

Radioiodine (I-131) therapy is routinely used to treat conditions of the thyroid. Dosimetry planning in advance of I-131 therapy has been shown to improve patient treatment outcomes. However, this pretherapy dosimetry step requires multiple outpatient appointments and is not feasible for patients li...

Descripción completa

Detalles Bibliográficos
Autores principales: O’Callaghan, Janet, Cody, Dervil, Cooke, Jennie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739645/
https://www.ncbi.nlm.nih.gov/pubmed/36502094
http://dx.doi.org/10.3390/s22239392
Descripción
Sumario:Radioiodine (I-131) therapy is routinely used to treat conditions of the thyroid. Dosimetry planning in advance of I-131 therapy has been shown to improve patient treatment outcomes. However, this pretherapy dosimetry step requires multiple outpatient appointments and is not feasible for patients living at greater distances. Here, the feasibility of a commercially available smartphone-operated radiation sensor (Smart Geiger Pro, Technonia) for at-home patient pretherapy dosimetry has been investigated. The influence of both treatment-specific parameters (radioisotope activity, gamma photon energy, patient size) and external factors (sensor placement and motion) on the ability of the radiation sensor to accurately quantify radiation dose rates has been studied. The performance limits of the radiation sensor have been identified. A preliminary trial of the sensor on four I-131 patients prior to their therapy, conducted at the Nuclear Medicine/Endocrinology departments of St James’s Hospital Dublin, is also presented. A comparable performance between the low-cost radiation sensor and that of a hospital-grade thyroid uptake probe is reported. This work demonstrates the potential of low-cost commercially available radiation sensors as a solution for at-home pretherapy dosimetry for long distance patients, or indeed for hospitals who wish to implement dosimetry at reduced cost. Recommended conditions for optimum sensor performance use are presented.