Cargando…

Computer Simulation of Composite Materials Behavior under Pressing

Composite materials have a wide range of functional properties, which is ensured by using various technological methods of obtaining both the matrix or fillers and the composition as a whole. A special place belongs to the composition formation technology, which ensures the necessary structure and p...

Descripción completa

Detalles Bibliográficos
Autores principales: Berladir, Khrystyna, Zhyhylii, Dmytro, Brejcha, Jiří, Pozovnyi, Oleksandr, Krmela, Jan, Krmelová, Vladimíra, Artyukhov, Artem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739662/
https://www.ncbi.nlm.nih.gov/pubmed/36501680
http://dx.doi.org/10.3390/polym14235288
Descripción
Sumario:Composite materials have a wide range of functional properties, which is ensured by using various technological methods of obtaining both the matrix or fillers and the composition as a whole. A special place belongs to the composition formation technology, which ensures the necessary structure and properties of the composite. In this work, a computer simulation was carried out to identify the main dependencies of the behavior of composite materials in the process of the main technological operations of their production: pressing and subsequent sintering. A polymer matrix randomly reinforced with two types of fillers: spherical and short cylindrical inclusions, was used to construct the finite element models of the structure of composites. The ANSYS Workbench package was used as a calculation simulation platform. The true stress–strain curves for tension, Poisson’s ratios, and ultimate stresses for composite materials were obtained using the finite element method based on the micromechanical approach at the first stage. These values were calculated based on the stretching diagrams of the matrix and fillers and the condition of the ideality of their joint operation. At the second stage, the processes of mechanical pressing of composite materials were modelled based on their elastic–plastic characteristics from the first stage. The result is an assessment of the accumulation of residual strains at the stage before sintering. The degree of increase in total strain capability of composite materials after sintering was shown.