Cargando…
One-Step Pyrolysis of Nitrogen-Containing Chemicals and Biochar Derived from Walnut Shells to Absorb Polycyclic Aromatic Hydrocarbons (PAHs)
The pyrolysis of biomass is an efficient means of utilizing biomass resources. Biomass can be converted into various high-performance chemicals and functional materials through pyrolysis. However, current pyrolysis technologies suffer from low conversion rates and single products, so the preparation...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739699/ https://www.ncbi.nlm.nih.gov/pubmed/36499539 http://dx.doi.org/10.3390/ijms232315193 |
Sumario: | The pyrolysis of biomass is an efficient means of utilizing biomass resources. Biomass can be converted into various high-performance chemicals and functional materials through pyrolysis. However, current pyrolysis technologies suffer from low conversion rates and single products, so the preparation of nitrogen compounds with high economic value remains a challenge. The walnut shell was soaked in three nitrogen-containing compound solutions before carbonization to produce high-value-added nitrogen-containing chemicals (with a nitrogen content of 59.09%) and biochar for the adsorption of polycyclic aromatic hydrocarbons (PAHs). According to biochar analysis, biochar has a porous structure with a specific surface area of 1161.30 m(2)/g and a high level of rocky desertification. The surface forms a dense pyrrole structure, and the structure produces π–π interactions with naphthalene molecules, exhibiting excellent naphthalene adsorption with a maximum capacity of 214.98 mg/g. This study provides an efficient, rapid, and environmentally friendly method for producing nitrogen-containing chemicals with high-added value and biochar. |
---|