Cargando…
An Intelligent Machinery Fault Diagnosis Method Based on GAN and Transfer Learning under Variable Working Conditions
Intelligent fault diagnosis is of great significance to guarantee the safe operation of mechanical equipment. However, the widely used diagnosis models rely on sufficient independent and homogeneously distributed monitoring data to train the model. In practice, the available data of mechanical equip...
Autores principales: | He, Wangpeng, Chen, Jing, Zhou, Yue, Liu, Xuan, Chen, Binqiang, Guo, Baolong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739787/ https://www.ncbi.nlm.nih.gov/pubmed/36501876 http://dx.doi.org/10.3390/s22239175 |
Ejemplares similares
-
An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network
por: Sun, Weifang, et al.
Publicado: (2017) -
Feature Space Transformation for Fault Diagnosis of Rotating Machinery under Different Working Conditions
por: Jang, Gye-Bong, et al.
Publicado: (2021) -
Health State Monitoring of Bladed Machinery with Crack Growth Detection in BFG Power Plant Using an Active Frequency Shift Spectral Correction Method
por: Sun, Weifang, et al.
Publicado: (2017) -
Intelligent fault diagnosis and remaining useful life prediction of rotating machinery
por: Lei, Yaguo
Publicado: (2016) -
Improved Variational Mode Decomposition and CNN for Intelligent Rotating Machinery Fault Diagnosis
por: Xiao, Qiyang, et al.
Publicado: (2022)