Cargando…

Recent Advances in Light-Controlled Activation of Pt(IV) Prodrugs

Pt(IV) prodrugs remain one of the most promising alternatives to conventional Pt(II) therapy due to their versatility in axial ligand choice and delayed mode of action. Selective activation from an external source is especially attractive due to the opportunity to control the activity of an antitumo...

Descripción completa

Detalles Bibliográficos
Autores principales: Spector, Daniil, Pavlov, Kirill, Beloglazkina, Elena, Krasnovskaya, Olga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739791/
https://www.ncbi.nlm.nih.gov/pubmed/36498837
http://dx.doi.org/10.3390/ijms232314511
Descripción
Sumario:Pt(IV) prodrugs remain one of the most promising alternatives to conventional Pt(II) therapy due to their versatility in axial ligand choice and delayed mode of action. Selective activation from an external source is especially attractive due to the opportunity to control the activity of an antitumor drug in space and time and avoid damage to normal tissues. In this review, we discuss recent advances in photoabsorber-mediated photocontrollable activation of Pt(IV) prodrugs. Two main approaches developed are the focus of the review. The first one is the photocatalytic strategy based on the flavin derivatives that are not covalently bound to the Pt(IV) substrate. The second one is the conjugation of photoactive molecules with the Pt(II) drug via axial position, yielding dual-action Pt(IV) molecules capable of the controllable release of Pt(II) cytotoxic agents. Thus, Pt(IV) prodrugs with a light-controlled mode of activation are non-toxic in the absence of light, but show high antiproliferative activity when irradiated. The susceptibility of Pt(IV) prodrugs to photoreduction, photoactivation mechanisms, and biological activity is considered in this review.