Cargando…
Defect Detection of MEMS Based on Data Augmentation, WGAN-DIV-DC, and a YOLOv5 Model
Surface defect detection of micro-electromechanical system (MEMS) acoustic thin film plays a crucial role in MEMS device inspection and quality control. The performances of deep learning object detection models are significantly affected by the number of samples in the training dataset. However, it...
Autores principales: | Shi, Zhenman, Sang, Mei, Huang, Yaokang, Xing, Lun, Liu, Tiegen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739821/ https://www.ncbi.nlm.nih.gov/pubmed/36502102 http://dx.doi.org/10.3390/s22239400 |
Ejemplares similares
-
Low-Illumination Image Enhancement in the Space Environment Based on the DC-WGAN Algorithm
por: Zhang, Minglu, et al.
Publicado: (2021) -
Mdwgan-gp: data augmentation for gene expression data based on multiple discriminator WGAN-GP
por: Li, Rongyuan, et al.
Publicado: (2023) -
GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
por: Zhao, Yue, et al.
Publicado: (2023) -
Low-Dose CT Image Denoising with Improving WGAN and Hybrid Loss Function
por: Li, Zhihua, et al.
Publicado: (2021) -
Strip Surface Defect Detection Algorithm Based on YOLOv5
por: Wang, Han, et al.
Publicado: (2023)