Cargando…
RHSOFS: Feature Selection Using the Rock Hyrax Swarm Optimization Algorithm for Credit Card Fraud Detection System
In recent years, detecting credit card fraud transactions has been a difficult task due to the high dimensions and imbalanced datasets. Selecting a subset of important features from a high-dimensional dataset has proven to be the most prominent approach for solving high-dimensional dataset issues, a...
Autores principales: | Padhi, Bharat Kumar, Chakravarty, Sujata, Naik, Bighnaraj, Pattanayak, Radha Mohan, Das, Himansu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739875/ https://www.ncbi.nlm.nih.gov/pubmed/36502020 http://dx.doi.org/10.3390/s22239321 |
Ejemplares similares
-
Oppositional Cat Swarm Optimization-Based Feature Selection Approach for Credit Card Fraud Detection
por: Prabhakaran, N., et al.
Publicado: (2023) -
Contactless Credit Cards Payment Fraud Protection by Ambient Authentication
por: Yang, Ming-Hour, et al.
Publicado: (2022) -
The role of diversity and ensemble learning in credit card fraud detection
por: Paldino, Gian Marco, et al.
Publicado: (2022) -
FraudMiner: A Novel Credit Card Fraud Detection Model Based on Frequent Itemset Mining
por: Seeja, K. R., et al.
Publicado: (2014) -
An Adaptive Approach on Credit Card Fraud Detection Using Transaction Aggregation and Word Embeddings
por: Yeşilkanat, Ali, et al.
Publicado: (2020)