Cargando…
Spiking Neural Networks for Structural Health Monitoring
This paper presents the first implementation of a spiking neural network (SNN) for the extraction of cepstral coefficients in structural health monitoring (SHM) applications and demonstrates the possibilities of neuromorphic computing in this field. In this regard, we show that spiking neural networ...
Autores principales: | Joseph, George Vathakkattil, Pakrashi, Vikram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740015/ https://www.ncbi.nlm.nih.gov/pubmed/36501946 http://dx.doi.org/10.3390/s22239245 |
Ejemplares similares
-
Limits on Anti-Phase Synchronization in Oscillator Networks
por: Vathakkattil Joseph, George, et al.
Publicado: (2020) -
Case Study—Spiking Neural Network Hardware System for Structural Health Monitoring
por: Pang, Lili, et al.
Publicado: (2020) -
Edge Structural Health Monitoring (E-SHM) Using Low-Power Wireless Sensing
por: Buckley, Tadhg, et al.
Publicado: (2021) -
Numerical Analysis and Experimental Verification of Damage Identification Metrics for Smart Beam with MFC Elements to Support Structural Health Monitoring
por: Koszewnik, Andrzej, et al.
Publicado: (2021) -
A Numerical Model for Experimental Designs of Vibration-Based Leak Detection and Monitoring of Water Pipes Using Piezoelectric Patches
por: Okosun, Favour, et al.
Publicado: (2020)