Cargando…
Comparative Colloidal Stability of Commercial Amphotericin B Nanoformulations Using Dynamic and Static Multiple Light Scattering Techniques
BACKGROUND: Amphotericin B (AmB) nanoformulations have been widely used for the treatment of invasive fungal infections in clinical practice, all of which are lyophilized solid dosage forms that improve storage stability. The colloidal stability of reconstituted lyophilized nanoparticles in an injec...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740024/ https://www.ncbi.nlm.nih.gov/pubmed/36510621 http://dx.doi.org/10.2147/IJN.S387681 |
_version_ | 1784847955600080896 |
---|---|
author | Ye, Jun Li, Renjie Cheng, Jialing Liu, Dongdong Yang, Yanfang Wang, Hongliang Xu, Xiaoyan Li, Lin Ma, Panpan Liu, Yuling |
author_facet | Ye, Jun Li, Renjie Cheng, Jialing Liu, Dongdong Yang, Yanfang Wang, Hongliang Xu, Xiaoyan Li, Lin Ma, Panpan Liu, Yuling |
author_sort | Ye, Jun |
collection | PubMed |
description | BACKGROUND: Amphotericin B (AmB) nanoformulations have been widely used for the treatment of invasive fungal infections in clinical practice, all of which are lyophilized solid dosage forms that improve storage stability. The colloidal stability of reconstituted lyophilized nanoparticles in an injection medium is a critical quality attribute that directly affects their safety and efficacy during clinical use. METHODS: In the present study, the colloidal stability of commercial AmB nanoformulations, including AmB cholesteryl sulfate complex (AmB-CSC) and AmB liposome (AmB-Lipo), was evaluated using the dynamic (DLS) and static multiple light scattering (SMLS) techniques. RESULTS: Compared to the DLS technique, the SMLS technique allows for a more objective and accurate evaluation of the colloidal stability of AmB nanoformulations. The results obtained using the SMLS technique demonstrated that AmB-CSC and AmB-Lipo exhibited excellent colloidal stability in both sterile water and 5% dextrose injection. The disk-like structure of the AmB-CSC nanoparticles more readily adsorbed serum proteins to form protein corona compared to the spherical structure of AmB-Lipo after incubation with serum. Additionally, AmB-CSC and AmB-Lipo can significantly reduce the in vitro cytotoxicity and in vivo nephrotoxicity of AmB, which may be attributed to the good colloidal stability and the improved pharmacokinetic profiles of AmB nanoformulations. CONCLUSION: To the best of our knowledge, this study is the first to compare the colloidal stability of commercial AmB nanoformulations. These findings will provide useful information not only to inform the clinical use of available AmB nanoformulations but also for improving the design and conduct of translational research on novel AmB nanomedicines. |
format | Online Article Text |
id | pubmed-9740024 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-97400242022-12-11 Comparative Colloidal Stability of Commercial Amphotericin B Nanoformulations Using Dynamic and Static Multiple Light Scattering Techniques Ye, Jun Li, Renjie Cheng, Jialing Liu, Dongdong Yang, Yanfang Wang, Hongliang Xu, Xiaoyan Li, Lin Ma, Panpan Liu, Yuling Int J Nanomedicine Original Research BACKGROUND: Amphotericin B (AmB) nanoformulations have been widely used for the treatment of invasive fungal infections in clinical practice, all of which are lyophilized solid dosage forms that improve storage stability. The colloidal stability of reconstituted lyophilized nanoparticles in an injection medium is a critical quality attribute that directly affects their safety and efficacy during clinical use. METHODS: In the present study, the colloidal stability of commercial AmB nanoformulations, including AmB cholesteryl sulfate complex (AmB-CSC) and AmB liposome (AmB-Lipo), was evaluated using the dynamic (DLS) and static multiple light scattering (SMLS) techniques. RESULTS: Compared to the DLS technique, the SMLS technique allows for a more objective and accurate evaluation of the colloidal stability of AmB nanoformulations. The results obtained using the SMLS technique demonstrated that AmB-CSC and AmB-Lipo exhibited excellent colloidal stability in both sterile water and 5% dextrose injection. The disk-like structure of the AmB-CSC nanoparticles more readily adsorbed serum proteins to form protein corona compared to the spherical structure of AmB-Lipo after incubation with serum. Additionally, AmB-CSC and AmB-Lipo can significantly reduce the in vitro cytotoxicity and in vivo nephrotoxicity of AmB, which may be attributed to the good colloidal stability and the improved pharmacokinetic profiles of AmB nanoformulations. CONCLUSION: To the best of our knowledge, this study is the first to compare the colloidal stability of commercial AmB nanoformulations. These findings will provide useful information not only to inform the clinical use of available AmB nanoformulations but also for improving the design and conduct of translational research on novel AmB nanomedicines. Dove 2022-12-06 /pmc/articles/PMC9740024/ /pubmed/36510621 http://dx.doi.org/10.2147/IJN.S387681 Text en © 2022 Ye et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Ye, Jun Li, Renjie Cheng, Jialing Liu, Dongdong Yang, Yanfang Wang, Hongliang Xu, Xiaoyan Li, Lin Ma, Panpan Liu, Yuling Comparative Colloidal Stability of Commercial Amphotericin B Nanoformulations Using Dynamic and Static Multiple Light Scattering Techniques |
title | Comparative Colloidal Stability of Commercial Amphotericin B Nanoformulations Using Dynamic and Static Multiple Light Scattering Techniques |
title_full | Comparative Colloidal Stability of Commercial Amphotericin B Nanoformulations Using Dynamic and Static Multiple Light Scattering Techniques |
title_fullStr | Comparative Colloidal Stability of Commercial Amphotericin B Nanoformulations Using Dynamic and Static Multiple Light Scattering Techniques |
title_full_unstemmed | Comparative Colloidal Stability of Commercial Amphotericin B Nanoformulations Using Dynamic and Static Multiple Light Scattering Techniques |
title_short | Comparative Colloidal Stability of Commercial Amphotericin B Nanoformulations Using Dynamic and Static Multiple Light Scattering Techniques |
title_sort | comparative colloidal stability of commercial amphotericin b nanoformulations using dynamic and static multiple light scattering techniques |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740024/ https://www.ncbi.nlm.nih.gov/pubmed/36510621 http://dx.doi.org/10.2147/IJN.S387681 |
work_keys_str_mv | AT yejun comparativecolloidalstabilityofcommercialamphotericinbnanoformulationsusingdynamicandstaticmultiplelightscatteringtechniques AT lirenjie comparativecolloidalstabilityofcommercialamphotericinbnanoformulationsusingdynamicandstaticmultiplelightscatteringtechniques AT chengjialing comparativecolloidalstabilityofcommercialamphotericinbnanoformulationsusingdynamicandstaticmultiplelightscatteringtechniques AT liudongdong comparativecolloidalstabilityofcommercialamphotericinbnanoformulationsusingdynamicandstaticmultiplelightscatteringtechniques AT yangyanfang comparativecolloidalstabilityofcommercialamphotericinbnanoformulationsusingdynamicandstaticmultiplelightscatteringtechniques AT wanghongliang comparativecolloidalstabilityofcommercialamphotericinbnanoformulationsusingdynamicandstaticmultiplelightscatteringtechniques AT xuxiaoyan comparativecolloidalstabilityofcommercialamphotericinbnanoformulationsusingdynamicandstaticmultiplelightscatteringtechniques AT lilin comparativecolloidalstabilityofcommercialamphotericinbnanoformulationsusingdynamicandstaticmultiplelightscatteringtechniques AT mapanpan comparativecolloidalstabilityofcommercialamphotericinbnanoformulationsusingdynamicandstaticmultiplelightscatteringtechniques AT liuyuling comparativecolloidalstabilityofcommercialamphotericinbnanoformulationsusingdynamicandstaticmultiplelightscatteringtechniques |