Cargando…
DRL-OS: A Deep Reinforcement Learning-Based Offloading Scheduler in Mobile Edge Computing
Hardware bottlenecks can throttle smart device (SD) performance when executing computation-intensive and delay-sensitive applications. Hence, task offloading can be used to transfer computation-intensive tasks to an external server or processor in Mobile Edge Computing. However, in this approach, th...
Autores principales: | Lim, Ducsun, Lee, Wooyeob, Kim, Won-Tae, Joe, Inwhee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740101/ https://www.ncbi.nlm.nih.gov/pubmed/36501914 http://dx.doi.org/10.3390/s22239212 |
Ejemplares similares
-
Distributed DRL-Based Computation Offloading Scheme for Improving QoE in Edge Computing Environments
por: Park, Jinho, et al.
Publicado: (2023) -
Deep reinforcement learning based offloading decision algorithm for vehicular edge computing
por: Hu, Xi, et al.
Publicado: (2022) -
Federated Deep Reinforcement Learning Based Task Offloading with Power Control in Vehicular Edge Computing
por: Moon, Sungwon, et al.
Publicado: (2022) -
DRL-Assisted Resource Allocation for NOMA-MEC Offloading with Hybrid SIC
por: Li, Haodong, et al.
Publicado: (2021) -
Towards Application-Driven Task Offloading in Edge Computing Based on Deep Reinforcement Learning
por: Sun, Ming, et al.
Publicado: (2021)