Cargando…
Channel Reduction for an EEG-Based Authentication System While Performing Motor Movements
Commercial use of biometric authentication is becoming increasingly popular, which has sparked the development of EEG-based authentication. To stimulate the brain and capture characteristic brain signals, these systems generally require the user to perform specific activities such as deeply concentr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740146/ https://www.ncbi.nlm.nih.gov/pubmed/36501858 http://dx.doi.org/10.3390/s22239156 |
_version_ | 1784847987145441280 |
---|---|
author | Ketola, Ellen C. Barankovich, Mikenzie Schuckers, Stephanie Ray-Dowling, Aratrika Hou, Daqing Imtiaz, Masudul H. |
author_facet | Ketola, Ellen C. Barankovich, Mikenzie Schuckers, Stephanie Ray-Dowling, Aratrika Hou, Daqing Imtiaz, Masudul H. |
author_sort | Ketola, Ellen C. |
collection | PubMed |
description | Commercial use of biometric authentication is becoming increasingly popular, which has sparked the development of EEG-based authentication. To stimulate the brain and capture characteristic brain signals, these systems generally require the user to perform specific activities such as deeply concentrating on an image, mental activity, visual counting, etc. This study investigates whether effective authentication would be feasible for users tasked with a minimal daily activity such as lifting a tiny object. With this novel protocol, the minimum number of EEG electrodes (channels) with the highest performance (ranked) was identified to improve user comfort and acceptance over traditional 32–64 electrode-based EEG systems while also reducing the load of real-time data processing. For this proof of concept, a public dataset was employed, which contains 32 channels of EEG data from 12 participants performing a motor task without intent for authentication. The data was filtered into five frequency bands, and 12 different features were extracted to train a random forest-based machine learning model. All channels were ranked according to Gini Impurity. It was found that only 14 channels are required to perform authentication when EEG data is filtered into the Gamma sub-band within a 1% accuracy of using 32-channels. This analysis will allow (a) the design of a custom headset with 14 electrodes clustered over the frontal and occipital lobe of the brain, (b) a reduction in data collection difficulty while performing authentication, (c) minimizing dataset size to allow real-time authentication while maintaining reasonable performance, and (d) an API for use in ranking authentication performance in different headsets and tasks. |
format | Online Article Text |
id | pubmed-9740146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97401462022-12-11 Channel Reduction for an EEG-Based Authentication System While Performing Motor Movements Ketola, Ellen C. Barankovich, Mikenzie Schuckers, Stephanie Ray-Dowling, Aratrika Hou, Daqing Imtiaz, Masudul H. Sensors (Basel) Article Commercial use of biometric authentication is becoming increasingly popular, which has sparked the development of EEG-based authentication. To stimulate the brain and capture characteristic brain signals, these systems generally require the user to perform specific activities such as deeply concentrating on an image, mental activity, visual counting, etc. This study investigates whether effective authentication would be feasible for users tasked with a minimal daily activity such as lifting a tiny object. With this novel protocol, the minimum number of EEG electrodes (channels) with the highest performance (ranked) was identified to improve user comfort and acceptance over traditional 32–64 electrode-based EEG systems while also reducing the load of real-time data processing. For this proof of concept, a public dataset was employed, which contains 32 channels of EEG data from 12 participants performing a motor task without intent for authentication. The data was filtered into five frequency bands, and 12 different features were extracted to train a random forest-based machine learning model. All channels were ranked according to Gini Impurity. It was found that only 14 channels are required to perform authentication when EEG data is filtered into the Gamma sub-band within a 1% accuracy of using 32-channels. This analysis will allow (a) the design of a custom headset with 14 electrodes clustered over the frontal and occipital lobe of the brain, (b) a reduction in data collection difficulty while performing authentication, (c) minimizing dataset size to allow real-time authentication while maintaining reasonable performance, and (d) an API for use in ranking authentication performance in different headsets and tasks. MDPI 2022-11-25 /pmc/articles/PMC9740146/ /pubmed/36501858 http://dx.doi.org/10.3390/s22239156 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ketola, Ellen C. Barankovich, Mikenzie Schuckers, Stephanie Ray-Dowling, Aratrika Hou, Daqing Imtiaz, Masudul H. Channel Reduction for an EEG-Based Authentication System While Performing Motor Movements |
title | Channel Reduction for an EEG-Based Authentication System While Performing Motor Movements |
title_full | Channel Reduction for an EEG-Based Authentication System While Performing Motor Movements |
title_fullStr | Channel Reduction for an EEG-Based Authentication System While Performing Motor Movements |
title_full_unstemmed | Channel Reduction for an EEG-Based Authentication System While Performing Motor Movements |
title_short | Channel Reduction for an EEG-Based Authentication System While Performing Motor Movements |
title_sort | channel reduction for an eeg-based authentication system while performing motor movements |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740146/ https://www.ncbi.nlm.nih.gov/pubmed/36501858 http://dx.doi.org/10.3390/s22239156 |
work_keys_str_mv | AT ketolaellenc channelreductionforaneegbasedauthenticationsystemwhileperformingmotormovements AT barankovichmikenzie channelreductionforaneegbasedauthenticationsystemwhileperformingmotormovements AT schuckersstephanie channelreductionforaneegbasedauthenticationsystemwhileperformingmotormovements AT raydowlingaratrika channelreductionforaneegbasedauthenticationsystemwhileperformingmotormovements AT houdaqing channelreductionforaneegbasedauthenticationsystemwhileperformingmotormovements AT imtiazmasudulh channelreductionforaneegbasedauthenticationsystemwhileperformingmotormovements |