Cargando…

New Constructed EEM Spectra Combined with N-PLS Analysis Approach as an Effective Way to Determine Multiple Target Compounds in Complex Samples

Excitation–emission matrix (EEM) fluorescence spectroscopy has been applied to many fields. In this study, a simple method was proposed to obtain the new constructed three-dimensional (3D) EEM spectra based on the original EEM spectra. Then, the application of the N-PLS method to the new constructed...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zeying, Feng, Na, Li, Xinkang, Lin, Yuan, Zhang, Xiangzhi, Li, Baoqiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740148/
https://www.ncbi.nlm.nih.gov/pubmed/36500471
http://dx.doi.org/10.3390/molecules27238378
Descripción
Sumario:Excitation–emission matrix (EEM) fluorescence spectroscopy has been applied to many fields. In this study, a simple method was proposed to obtain the new constructed three-dimensional (3D) EEM spectra based on the original EEM spectra. Then, the application of the N-PLS method to the new constructed 3D EEM spectra was proposed to quantify target compounds in two complex data sets. The quantitative models were established on external sample sets and validated using statistical parameters. For validation purposes, the obtained results were compared with those obtained by applying the N-PLS method to the original EEM spectra and applying the PLS method to the extracted maximum spectra in the concatenated mode. The comparison of the results demonstrated that, given the advantages of less useless information and a high calculating speed of the new constructed 3D EEM spectra, N-PLS on the new constructed 3D EEM spectra obtained better quantitative analysis results with a correlation coefficient of prediction above 0.9906 and recovery values in the range of 85.6–95.6%. Therefore, one can conclude that the N-PLS method combined with the new constructed 3D EEM spectra is expected to be broadened as an alternative strategy for the simultaneous determination of multiple target compounds.