Cargando…
A Spatiotemporal Deep Neural Network Useful for Defect Identification and Reconstruction of Artworks Using Infrared Thermography
Assessment of cultural heritage assets is now extremely important all around the world. Non-destructive inspection is essential for preserving the integrity of artworks while avoiding the loss of any precious materials that make them up. The use of Infrared Thermography is an interesting concept sin...
Autores principales: | Moradi, Morteza, Ghorbani, Ramin, Sfarra, Stefano, Tax, David M.J., Zarouchas, Dimitrios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740253/ https://www.ncbi.nlm.nih.gov/pubmed/36502062 http://dx.doi.org/10.3390/s22239361 |
Ejemplares similares
-
Infrared Thermography Approach for Pipelines and Cylindrical Based Geometries
por: Amer, Saed, et al.
Publicado: (2020) -
Simulation-aided infrared thermography with decomposition-based noise reduction for detecting defects in ancient polyptychs
por: Jiang, Guimin, et al.
Publicado: (2023) -
Special Issue on “Infrared Thermography and Additional Non-Destructive Testing for Building, Structure and Material Inspections”
por: Sfarra, Stefano, et al.
Publicado: (2021) -
Generative Deep Learning-Based Thermographic Inspection of Artwork
por: Liu, Yi, et al.
Publicado: (2023) -
Detection of Defects in Geomembranes Using Quasi-Active Infrared Thermography
por: Ma, Yue, et al.
Publicado: (2021)