Cargando…

The TinyV3RSE Hardware-in-the-Loop Vision-Based Navigation Facility

The increase in number of interplanetary probes has emphasized the need for spacecraft autonomy to reduce overall mission costs and to enable riskier operations without ground support. The perception of the external environment is a critical task for autonomous probes, being fundamental for both mot...

Descripción completa

Detalles Bibliográficos
Autores principales: Panicucci, Paolo, Topputo, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740262/
https://www.ncbi.nlm.nih.gov/pubmed/36502033
http://dx.doi.org/10.3390/s22239333
Descripción
Sumario:The increase in number of interplanetary probes has emphasized the need for spacecraft autonomy to reduce overall mission costs and to enable riskier operations without ground support. The perception of the external environment is a critical task for autonomous probes, being fundamental for both motion planning and actuation. Perception is often achieved using navigation sensors which provide measurements of the external environment. For space exploration purposes, cameras are among the sensors that provide navigation information with few constraints at the spacecraft system level. Image processing and vision-based navigation algorithms are exploited to extract information about the external environment and the probe’s position within it from images. It is thus crucial to have the capability to generate realistic image datasets to design, validate, and test autonomous algorithms. This goal is achieved with high-fidelity rendering engines and with hardware-in-the-loop simulations. This work focuses on the latter by presenting a facility developed and used at the Deep-space Astrodynamics Research and Technology (DART) Laboratory at Politecnico di Milano. First, the facility design relationships are established to select hardware components. The critical design parameters of the camera, lens system, and screen are identified and analytical relationships are developed among these parameters. Second, the performances achievable with the chosen components are analytically and numerically studied in terms of geometrical accuracy and optical distortions. Third, the calibration procedures compensating for hardware misalignment and errors are defined. Their performances are evaluated in a laboratory experiment to display the calibration quality. Finally, the facility applicability is demonstrated by testing imageprocessing algorithms for space exploration scenarios.