Cargando…

Small Gastric Stromal Tumors: An Underestimated Risk

SIMPLE SUMMARY: In this study, the high oncogenic mutation frequency (96%) of small GISTs is identified by whole-exome sequencing and targeted sanger sequencing in the entire cohort (n = 76) of a Chinese population. The BRAF-V600E hotspot mutation was present in ~15% small GISTs. Positive surgical o...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Jintao, Ge, Qichao, Yang, Fan, Wang, Sheng, Ge, Nan, Liu, Xiang, Shi, Jing, Fusaroli, Pietro, Liu, Yang, Sun, Siyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740305/
https://www.ncbi.nlm.nih.gov/pubmed/36497489
http://dx.doi.org/10.3390/cancers14236008
Descripción
Sumario:SIMPLE SUMMARY: In this study, the high oncogenic mutation frequency (96%) of small GISTs is identified by whole-exome sequencing and targeted sanger sequencing in the entire cohort (n = 76) of a Chinese population. The BRAF-V600E hotspot mutation was present in ~15% small GISTs. Positive surgical or endoscopic resection should be considered for small GISTs because of their universal oncogenic mutation and undefined prognosis. ABSTRACT: Background and Objectives: Small gastrointestinal stromal tumors (GISTs) are defined as tumors less than 2 cm in diameter, which are often found incidentally during gastroscopy. There is controversy regarding the management of small GISTs, and a certain percentage of small GISTs become malignant during follow-up. Previous studies which used Sanger targeted sequencing have shown that the mutation rate of small GISTs is significantly lower than that of large tumors. The aim of this study was to investigate the overall mutational profile of small GISTs, including those of wild-type tumors, using whole-exome sequencing (WES) and Sanger sequencing. Methods: Thirty-six paired small GIST specimens, which were resected by endoscopy, were analyzed by WES. Somatic mutations identified by WES were confirmed by Sanger sequencing. Sanger sequencing was performed in an additional 38 small gastric stromal tumor samples for examining hotspot mutations in KIT, PDGFRA, and BRAF. Results: Somatic C-KIT/PDGFRA mutations accounted for 81% of the mutations, including three novel mutation sites in C-KIT at exon 11, across the entire small gastric stromal tumor cohort (n = 74). In addition, 15% of small GISTs harbored previously undescribed BRAF-V600E hotspot mutations. No significant correlation was observed among the genotype, pathological features, and clinical classification. Conclusions: Our data revealed a high overall mutation rate (~96%) in small GISTs, indicating that genetic alterations are common events in early GIST generation. We also identified a high frequency of oncogenic BRAF-V600E mutations (15%) in small GISTs, which has not been previously reported.