Cargando…

Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model

Skin aging caused by various endogenous and exogenous factors results in structural and functional changes to skin components. However, the role of senescent cells in skin aging has not been clarified. To elucidate the function of senescent cells in skin aging, we evaluated the effects of the glutam...

Descripción completa

Detalles Bibliográficos
Autores principales: Takaya, Kento, Ishii, Tatsuyuki, Asou, Toru, Kishi, Kazuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740363/
https://www.ncbi.nlm.nih.gov/pubmed/36435512
http://dx.doi.org/10.18632/aging.204391
_version_ 1784848042904518656
author Takaya, Kento
Ishii, Tatsuyuki
Asou, Toru
Kishi, Kazuo
author_facet Takaya, Kento
Ishii, Tatsuyuki
Asou, Toru
Kishi, Kazuo
author_sort Takaya, Kento
collection PubMed
description Skin aging caused by various endogenous and exogenous factors results in structural and functional changes to skin components. However, the role of senescent cells in skin aging has not been clarified. To elucidate the function of senescent cells in skin aging, we evaluated the effects of the glutaminase inhibitor BPTES (bis-2-(5-phenylacetamido-1, 3, 4-thiadiazol-2-yl)ethyl sulfide) on human senescent dermal fibroblasts and aged human skin. Here, primary human dermal fibroblasts (HDFs) were induced to senescence by long-term passaging, ionizing radiation, and treatment with doxorubicin, an anticancer drug. Cell viability of HDFs was assessed after BPTES treatment. A mouse/human chimeric model was created by subcutaneously transplanting whole skin grafts from aged humans into nude mice. The model was treated intraperitoneally with BPTES or vehicle for 30 days. Skin samples were collected and subjected to reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting, and histological analysis. BPTES selectively eliminated senescent dermal fibroblasts regardless of the method used to induce senescence; aged human skin grafts treated with BPTES exhibited increased collagen density, increased cell proliferation in the dermis, and decreased aging-related secretory phenotypes, such as matrix metalloprotease and interleukin. These effects were maintained in the grafts 1 month after termination of the treatment. In conclusion, selective removal of senescent dermal fibroblasts can improve the skin aging phenotype, indicating that BPTES may be an effective novel therapeutic agent for skin aging.
format Online
Article
Text
id pubmed-9740363
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Impact Journals
record_format MEDLINE/PubMed
spelling pubmed-97403632022-12-12 Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model Takaya, Kento Ishii, Tatsuyuki Asou, Toru Kishi, Kazuo Aging (Albany NY) Research Paper Skin aging caused by various endogenous and exogenous factors results in structural and functional changes to skin components. However, the role of senescent cells in skin aging has not been clarified. To elucidate the function of senescent cells in skin aging, we evaluated the effects of the glutaminase inhibitor BPTES (bis-2-(5-phenylacetamido-1, 3, 4-thiadiazol-2-yl)ethyl sulfide) on human senescent dermal fibroblasts and aged human skin. Here, primary human dermal fibroblasts (HDFs) were induced to senescence by long-term passaging, ionizing radiation, and treatment with doxorubicin, an anticancer drug. Cell viability of HDFs was assessed after BPTES treatment. A mouse/human chimeric model was created by subcutaneously transplanting whole skin grafts from aged humans into nude mice. The model was treated intraperitoneally with BPTES or vehicle for 30 days. Skin samples were collected and subjected to reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting, and histological analysis. BPTES selectively eliminated senescent dermal fibroblasts regardless of the method used to induce senescence; aged human skin grafts treated with BPTES exhibited increased collagen density, increased cell proliferation in the dermis, and decreased aging-related secretory phenotypes, such as matrix metalloprotease and interleukin. These effects were maintained in the grafts 1 month after termination of the treatment. In conclusion, selective removal of senescent dermal fibroblasts can improve the skin aging phenotype, indicating that BPTES may be an effective novel therapeutic agent for skin aging. Impact Journals 2022-11-21 /pmc/articles/PMC9740363/ /pubmed/36435512 http://dx.doi.org/10.18632/aging.204391 Text en Copyright: © 2022 Takaya et al. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Paper
Takaya, Kento
Ishii, Tatsuyuki
Asou, Toru
Kishi, Kazuo
Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model
title Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model
title_full Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model
title_fullStr Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model
title_full_unstemmed Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model
title_short Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model
title_sort glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740363/
https://www.ncbi.nlm.nih.gov/pubmed/36435512
http://dx.doi.org/10.18632/aging.204391
work_keys_str_mv AT takayakento glutaminaseinhibitorsrejuvenatehumanskinviaclearanceofsenescentcellsastudyusingamousehumanchimericmodel
AT ishiitatsuyuki glutaminaseinhibitorsrejuvenatehumanskinviaclearanceofsenescentcellsastudyusingamousehumanchimericmodel
AT asoutoru glutaminaseinhibitorsrejuvenatehumanskinviaclearanceofsenescentcellsastudyusingamousehumanchimericmodel
AT kishikazuo glutaminaseinhibitorsrejuvenatehumanskinviaclearanceofsenescentcellsastudyusingamousehumanchimericmodel