Cargando…
Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model
Skin aging caused by various endogenous and exogenous factors results in structural and functional changes to skin components. However, the role of senescent cells in skin aging has not been clarified. To elucidate the function of senescent cells in skin aging, we evaluated the effects of the glutam...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740363/ https://www.ncbi.nlm.nih.gov/pubmed/36435512 http://dx.doi.org/10.18632/aging.204391 |
_version_ | 1784848042904518656 |
---|---|
author | Takaya, Kento Ishii, Tatsuyuki Asou, Toru Kishi, Kazuo |
author_facet | Takaya, Kento Ishii, Tatsuyuki Asou, Toru Kishi, Kazuo |
author_sort | Takaya, Kento |
collection | PubMed |
description | Skin aging caused by various endogenous and exogenous factors results in structural and functional changes to skin components. However, the role of senescent cells in skin aging has not been clarified. To elucidate the function of senescent cells in skin aging, we evaluated the effects of the glutaminase inhibitor BPTES (bis-2-(5-phenylacetamido-1, 3, 4-thiadiazol-2-yl)ethyl sulfide) on human senescent dermal fibroblasts and aged human skin. Here, primary human dermal fibroblasts (HDFs) were induced to senescence by long-term passaging, ionizing radiation, and treatment with doxorubicin, an anticancer drug. Cell viability of HDFs was assessed after BPTES treatment. A mouse/human chimeric model was created by subcutaneously transplanting whole skin grafts from aged humans into nude mice. The model was treated intraperitoneally with BPTES or vehicle for 30 days. Skin samples were collected and subjected to reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting, and histological analysis. BPTES selectively eliminated senescent dermal fibroblasts regardless of the method used to induce senescence; aged human skin grafts treated with BPTES exhibited increased collagen density, increased cell proliferation in the dermis, and decreased aging-related secretory phenotypes, such as matrix metalloprotease and interleukin. These effects were maintained in the grafts 1 month after termination of the treatment. In conclusion, selective removal of senescent dermal fibroblasts can improve the skin aging phenotype, indicating that BPTES may be an effective novel therapeutic agent for skin aging. |
format | Online Article Text |
id | pubmed-9740363 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Impact Journals |
record_format | MEDLINE/PubMed |
spelling | pubmed-97403632022-12-12 Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model Takaya, Kento Ishii, Tatsuyuki Asou, Toru Kishi, Kazuo Aging (Albany NY) Research Paper Skin aging caused by various endogenous and exogenous factors results in structural and functional changes to skin components. However, the role of senescent cells in skin aging has not been clarified. To elucidate the function of senescent cells in skin aging, we evaluated the effects of the glutaminase inhibitor BPTES (bis-2-(5-phenylacetamido-1, 3, 4-thiadiazol-2-yl)ethyl sulfide) on human senescent dermal fibroblasts and aged human skin. Here, primary human dermal fibroblasts (HDFs) were induced to senescence by long-term passaging, ionizing radiation, and treatment with doxorubicin, an anticancer drug. Cell viability of HDFs was assessed after BPTES treatment. A mouse/human chimeric model was created by subcutaneously transplanting whole skin grafts from aged humans into nude mice. The model was treated intraperitoneally with BPTES or vehicle for 30 days. Skin samples were collected and subjected to reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting, and histological analysis. BPTES selectively eliminated senescent dermal fibroblasts regardless of the method used to induce senescence; aged human skin grafts treated with BPTES exhibited increased collagen density, increased cell proliferation in the dermis, and decreased aging-related secretory phenotypes, such as matrix metalloprotease and interleukin. These effects were maintained in the grafts 1 month after termination of the treatment. In conclusion, selective removal of senescent dermal fibroblasts can improve the skin aging phenotype, indicating that BPTES may be an effective novel therapeutic agent for skin aging. Impact Journals 2022-11-21 /pmc/articles/PMC9740363/ /pubmed/36435512 http://dx.doi.org/10.18632/aging.204391 Text en Copyright: © 2022 Takaya et al. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Takaya, Kento Ishii, Tatsuyuki Asou, Toru Kishi, Kazuo Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model |
title | Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model |
title_full | Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model |
title_fullStr | Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model |
title_full_unstemmed | Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model |
title_short | Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model |
title_sort | glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740363/ https://www.ncbi.nlm.nih.gov/pubmed/36435512 http://dx.doi.org/10.18632/aging.204391 |
work_keys_str_mv | AT takayakento glutaminaseinhibitorsrejuvenatehumanskinviaclearanceofsenescentcellsastudyusingamousehumanchimericmodel AT ishiitatsuyuki glutaminaseinhibitorsrejuvenatehumanskinviaclearanceofsenescentcellsastudyusingamousehumanchimericmodel AT asoutoru glutaminaseinhibitorsrejuvenatehumanskinviaclearanceofsenescentcellsastudyusingamousehumanchimericmodel AT kishikazuo glutaminaseinhibitorsrejuvenatehumanskinviaclearanceofsenescentcellsastudyusingamousehumanchimericmodel |