Cargando…

Pavement Distress Estimation via Signal on Graph Processing

A comprehensive representation of the road pavement state of health is of great interest. In recent years, automated data collection and processing technology has been used for pavement inspection. In this paper, a new signal on graph (SoG) model of road pavement distresses is presented with the aim...

Descripción completa

Detalles Bibliográficos
Autores principales: Bruno, Salvatore, Colonnese, Stefania, Scarano, Gaetano, Del Serrone, Giulia, Loprencipe, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740412/
https://www.ncbi.nlm.nih.gov/pubmed/36501885
http://dx.doi.org/10.3390/s22239183
Descripción
Sumario:A comprehensive representation of the road pavement state of health is of great interest. In recent years, automated data collection and processing technology has been used for pavement inspection. In this paper, a new signal on graph (SoG) model of road pavement distresses is presented with the aim of improving automatic pavement distress detection systems. A novel nonlinear Bayesian estimator in recovering distress metrics is also derived. The performance of the methodology was evaluated on a large dataset of pavement distress values collected in field tests conducted in Kazakhstan. The application of the proposed methodology is effective in recovering acquisition errors, improving road failure detection. Moreover, the output of the Bayesian estimator can be used to identify sections where the measurement acquired by the 3D laser technology is unreliable. Therefore, the presented model could be used to schedule road section maintenance in a better way.