Cargando…
Machine Learning Models for Weight-Bearing Activity Type Recognition Based on Accelerometry in Postmenopausal Women
Hip-worn triaxial accelerometers are widely used to assess physical activity in terms of energy expenditure. Methods for classification in terms of different types of activity of relevance to the skeleton in populations at risk of osteoporosis are not currently available. This publication aims to as...
Autores principales: | Huggins, Cameron J., Clarke, Rebecca, Abasolo, Daniel, Gil-Rey, Erreka, Tobias, Jonathan H., Deere, Kevin, Allison, Sarah J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740741/ https://www.ncbi.nlm.nih.gov/pubmed/36501877 http://dx.doi.org/10.3390/s22239176 |
Ejemplares similares
-
Accelerometry-Based Activity Recognition and Assessment in Rheumatic and Musculoskeletal Diseases
por: Billiet, Lieven, et al.
Publicado: (2016) -
Quantifying Habitual Levels of Physical Activity According to Impact in Older People: Accelerometry Protocol for the VIBE Study
por: Deere, Kevin C., et al.
Publicado: (2015) -
Real-Time Gait Cycle Parameter Recognition Using a Wearable Accelerometry System
por: Yang, Che-Chang, et al.
Publicado: (2011) -
eFisioTrack: A Telerehabilitation Environment Based on Motion Recognition Using Accelerometry
por: Ruiz-Fernandez, Daniel, et al.
Publicado: (2014) -
Age Differences in Estimating Physical Activity by Wrist Accelerometry Using Machine Learning
por: Mardini, Mamoun T., et al.
Publicado: (2021)