Cargando…
Multi-Objective Optimization of Sugarcane Milling System Operations Based on a Deep Data-Driven Model
The extraction of sugarcane juice is the first step of sugar production. The optimal values of process indicators and the set values of operating parameters in this process are still determined by workers’ experience, preventing adaptive adjustment of the production process. To address this issue, a...
Autores principales: | Li, Zhengyuan, Chen, Jie, Meng, Yanmei, Zhu, Jihong, Li, Jiqin, Zhang, Yue, Li, Chengfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740788/ https://www.ncbi.nlm.nih.gov/pubmed/36496653 http://dx.doi.org/10.3390/foods11233845 |
Ejemplares similares
-
Multi-objective parameter optimization of CNC plane milling for sustainable manufacturing
por: Jia, Shun, et al.
Publicado: (2022) -
Data‐driven modeling based on kernel extreme learning machine for sugarcane juice clarification
por: Meng, Yanmei, et al.
Publicado: (2019) -
Metagenome-assembled genomes from sugarcane mill mud
por: Uchimiya, Minori, et al.
Publicado: (2023) -
Chemical and microbial characterization of sugarcane mill mud for soil applications
por: Uchimiya, Minori, et al.
Publicado: (2022) -
Data-driven multi-objective optimization for electric vehicle charging infrastructure
por: Farhadi, Farzaneh, et al.
Publicado: (2023)