Cargando…

The Connection between Gut and Lung Microbiota, Mast Cells, Platelets and SARS-CoV-2 in the Elderly Patient

The human coronavirus SARS-CoV-2 or COVID-19 that emerged in late 2019 causes a respiratory tract infection and has currently resulted in more than 627 million confirmed cases and over 6.58 million deaths worldwide up to October 2022. The highest death rate caused by COVID-19 is in older people, esp...

Descripción completa

Detalles Bibliográficos
Autor principal: Traina, Giovanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740794/
https://www.ncbi.nlm.nih.gov/pubmed/36499222
http://dx.doi.org/10.3390/ijms232314898
Descripción
Sumario:The human coronavirus SARS-CoV-2 or COVID-19 that emerged in late 2019 causes a respiratory tract infection and has currently resulted in more than 627 million confirmed cases and over 6.58 million deaths worldwide up to October 2022. The highest death rate caused by COVID-19 is in older people, especially those with comorbidities. This evidence presents a challenge for biomedical research on aging and also identifies some key players in inflammation, including mast cells and platelets, which could represent important markers and, at the same time, unconventional therapeutic targets. Studies have shown a decrease in the diversity of gut microbiota composition in the elderly, particularly a reduced abundance of butyrate-producing species, and COVID-19 patients manifest faecal microbiome alterations, with an increase in opportunistic pathogens and a depletion of commensal beneficial microorganisms. The main purpose of this narrative review is to highlight how an altered condition of the gut microbiota, especially in the elderly, could be an important factor and have a strong impact in the lung homeostasis and COVID-19 phenomenon, jointly to the activation of mast cells and platelets, and also affect the outcomes of the pathology. Therefore, a targeted and careful control of the intestinal microbiota could represent a complementary intervention to be implemented for the management and the challenge against COVID-19.