Cargando…

Augmented Hearing of Auditory Safety Cues for Construction Workers: A Systematic Literature Review

Safety-critical sounds at job sites play an essential role in construction safety, but hearing capability is often declined due to the use of hearing protection and the complicated nature of construction noise. Thus, preserving or augmenting the auditory situational awareness of construction workers...

Descripción completa

Detalles Bibliográficos
Autores principales: Elelu, Kehinde, Le, Tuyen, Le, Chau
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740817/
https://www.ncbi.nlm.nih.gov/pubmed/36501836
http://dx.doi.org/10.3390/s22239135
Descripción
Sumario:Safety-critical sounds at job sites play an essential role in construction safety, but hearing capability is often declined due to the use of hearing protection and the complicated nature of construction noise. Thus, preserving or augmenting the auditory situational awareness of construction workers has become a critical need. To enable further advances in this area, it is necessary to synthesize the state-of-the-art auditory signal processing techniques and their implications for auditory situational awareness (ASA) and to identify future research needs. This paper presents a critical review of recent publications on acoustic signal processing techniques and suggests research gaps that merit further research for fully embracing construction workers’ ASA of hazardous situations in construction. The results from the content analysis show that research on ASA in the context of construction safety is still in its early stage, with inadequate AI-based sound sensing methods available. Little research has been undertaken to augment individual construction workers in recognizing important signals that may be blocked or mixed with complex ambient noise. Further research on auditory situational awareness technology is needed to support detecting and separating important acoustic safety cues from complex ambient sounds. More work is also needed to incorporate context information into sound-based hazard detection and to investigate human factors affecting the collaboration between workers and AI assistants in sensing the safety cues of hazards.