Cargando…

DNA Methylation Variation Is a Possible Mechanism in the Response of Haemaphysalis longicornis to Low-Temperature Stress

Ticks are notorious ectoparasites and transmit the greatest variety of pathogens than any other arthropods. Cold tolerance is a key determinant of tick abundance and distribution. While studies have shown that DNA methylation is one of the important epigenetic regulations found across many species a...

Descripción completa

Detalles Bibliográficos
Autores principales: Nwanade, Chuks Fidelis, Wang, Zihao, Bai, Ruwei, Wang, Ruotong, Zhang, Tianai, Liu, Jingze, Yu, Zhijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740864/
https://www.ncbi.nlm.nih.gov/pubmed/36499526
http://dx.doi.org/10.3390/ijms232315207
_version_ 1784848172570378240
author Nwanade, Chuks Fidelis
Wang, Zihao
Bai, Ruwei
Wang, Ruotong
Zhang, Tianai
Liu, Jingze
Yu, Zhijun
author_facet Nwanade, Chuks Fidelis
Wang, Zihao
Bai, Ruwei
Wang, Ruotong
Zhang, Tianai
Liu, Jingze
Yu, Zhijun
author_sort Nwanade, Chuks Fidelis
collection PubMed
description Ticks are notorious ectoparasites and transmit the greatest variety of pathogens than any other arthropods. Cold tolerance is a key determinant of tick abundance and distribution. While studies have shown that DNA methylation is one of the important epigenetic regulations found across many species and plays a significant role in their response to low-temperature stress, its role in the response of ticks to low-temperature stress remains unexplored. Herein, we explored the DNA methylation profile of the tick, Haemaphysalis longicornis, exposed to low-temperature stress (4 °C) using whole-genome bisulfite sequencing (WGBS). We found that approximately 0.95% and 0.94% of the genomic C sites were methylated in the control and low-temperature groups, respectively. Moreover, the methylation level under the CG context was about 3.86% and 3.85% in the control and low-temperature groups, respectively. In addition, a total of 6087 differentially methylated regions (DMRs) were identified between the low-temperature and control groups, including 3288 hypermethylated and 2799 hypomethylated DMRs. Further, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially methylated genes revealed that most of the DMGs were significantly enriched in binding and RNA transport pathways. Taken together, this research confirmed, for the first time, the whole genome DNA methylation profile of H. longicornis and provided new insights into the DNA methylation changes relating to low-temperature stress in H. longicornis, as well as provided a foundation for future studies on the epigenetic mechanism underlying the responses of ticks to abiotic stress.
format Online
Article
Text
id pubmed-9740864
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97408642022-12-11 DNA Methylation Variation Is a Possible Mechanism in the Response of Haemaphysalis longicornis to Low-Temperature Stress Nwanade, Chuks Fidelis Wang, Zihao Bai, Ruwei Wang, Ruotong Zhang, Tianai Liu, Jingze Yu, Zhijun Int J Mol Sci Article Ticks are notorious ectoparasites and transmit the greatest variety of pathogens than any other arthropods. Cold tolerance is a key determinant of tick abundance and distribution. While studies have shown that DNA methylation is one of the important epigenetic regulations found across many species and plays a significant role in their response to low-temperature stress, its role in the response of ticks to low-temperature stress remains unexplored. Herein, we explored the DNA methylation profile of the tick, Haemaphysalis longicornis, exposed to low-temperature stress (4 °C) using whole-genome bisulfite sequencing (WGBS). We found that approximately 0.95% and 0.94% of the genomic C sites were methylated in the control and low-temperature groups, respectively. Moreover, the methylation level under the CG context was about 3.86% and 3.85% in the control and low-temperature groups, respectively. In addition, a total of 6087 differentially methylated regions (DMRs) were identified between the low-temperature and control groups, including 3288 hypermethylated and 2799 hypomethylated DMRs. Further, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially methylated genes revealed that most of the DMGs were significantly enriched in binding and RNA transport pathways. Taken together, this research confirmed, for the first time, the whole genome DNA methylation profile of H. longicornis and provided new insights into the DNA methylation changes relating to low-temperature stress in H. longicornis, as well as provided a foundation for future studies on the epigenetic mechanism underlying the responses of ticks to abiotic stress. MDPI 2022-12-02 /pmc/articles/PMC9740864/ /pubmed/36499526 http://dx.doi.org/10.3390/ijms232315207 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Nwanade, Chuks Fidelis
Wang, Zihao
Bai, Ruwei
Wang, Ruotong
Zhang, Tianai
Liu, Jingze
Yu, Zhijun
DNA Methylation Variation Is a Possible Mechanism in the Response of Haemaphysalis longicornis to Low-Temperature Stress
title DNA Methylation Variation Is a Possible Mechanism in the Response of Haemaphysalis longicornis to Low-Temperature Stress
title_full DNA Methylation Variation Is a Possible Mechanism in the Response of Haemaphysalis longicornis to Low-Temperature Stress
title_fullStr DNA Methylation Variation Is a Possible Mechanism in the Response of Haemaphysalis longicornis to Low-Temperature Stress
title_full_unstemmed DNA Methylation Variation Is a Possible Mechanism in the Response of Haemaphysalis longicornis to Low-Temperature Stress
title_short DNA Methylation Variation Is a Possible Mechanism in the Response of Haemaphysalis longicornis to Low-Temperature Stress
title_sort dna methylation variation is a possible mechanism in the response of haemaphysalis longicornis to low-temperature stress
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740864/
https://www.ncbi.nlm.nih.gov/pubmed/36499526
http://dx.doi.org/10.3390/ijms232315207
work_keys_str_mv AT nwanadechuksfidelis dnamethylationvariationisapossiblemechanismintheresponseofhaemaphysalislongicornistolowtemperaturestress
AT wangzihao dnamethylationvariationisapossiblemechanismintheresponseofhaemaphysalislongicornistolowtemperaturestress
AT bairuwei dnamethylationvariationisapossiblemechanismintheresponseofhaemaphysalislongicornistolowtemperaturestress
AT wangruotong dnamethylationvariationisapossiblemechanismintheresponseofhaemaphysalislongicornistolowtemperaturestress
AT zhangtianai dnamethylationvariationisapossiblemechanismintheresponseofhaemaphysalislongicornistolowtemperaturestress
AT liujingze dnamethylationvariationisapossiblemechanismintheresponseofhaemaphysalislongicornistolowtemperaturestress
AT yuzhijun dnamethylationvariationisapossiblemechanismintheresponseofhaemaphysalislongicornistolowtemperaturestress