Cargando…

Methylation, Hydroxylation, Glycosylation and Acylation Affect the Transport of Wine Anthocyanins in Caco-2 Cells

Anthocyanins are substances with multiple physiological activities widely present in red wine, but the influence of structure (methylation, hydroxylation, acylation, glycosylation) on the transport remains ill-defined. In the present study, Caco-2 monolayers were used as an in vitro model of the abs...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yang, Lin, Jiali, Cheng, Tiantian, Liu, Yangjie, Han, Fuliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740975/
https://www.ncbi.nlm.nih.gov/pubmed/36496602
http://dx.doi.org/10.3390/foods11233793
Descripción
Sumario:Anthocyanins are substances with multiple physiological activities widely present in red wine, but the influence of structure (methylation, hydroxylation, acylation, glycosylation) on the transport remains ill-defined. In the present study, Caco-2 monolayers were used as an in vitro model of the absorptive intestinal epithelium to transport different types of anthocyanin samples. Results showed that both methylation and acetylation promote the level of transport. Monoglycoside standard exhibited higher transport amount and rate compared to diglycoside standard while the transport level of the monoglycoside mixture was unexpectedly lower than that of the diglycoside mixture. Caco-2 monolayers appeared to be more capable of transporting the single standard than the mixed standard. Meanwhile, the transport of anthocyanins in Caco-2 cell model showed time- and concentration-dependent trends. Anthocyanin treatment had a greater effect on sodium-dependent glucose transporter 1 (SGLT1) mRNA expression than glucose transporter 2 (GLUT2), and significantly down-regulated the protein expression of SGLT1. Although the low bioavailability of anthocyanins requires much more research, further evidence of the role of structure is provided.