Cargando…
Photoluminescent Gold/BSA Nanoclusters (AuNC@BSA) as Sensors for Red-Fluorescence Detection of Mycotoxins
The BSA-encapsulated gold nanoclusters (AuNC@BSA) have drawn considerable interest and demonstrated applications as biological sensors. In this study, we demonstrated that the red-emitting AuNC@BSA prepared using a modified procedure fully retained the binding of standard BSA-ligands (small molecule...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740986/ https://www.ncbi.nlm.nih.gov/pubmed/36499945 http://dx.doi.org/10.3390/ma15238448 |
Sumario: | The BSA-encapsulated gold nanoclusters (AuNC@BSA) have drawn considerable interest and demonstrated applications as biological sensors. In this study, we demonstrated that the red-emitting AuNC@BSA prepared using a modified procedure fully retained the binding of standard BSA-ligands (small molecule drugs), significantly improving fluorescence detection in some cases due to the red-emission property. Further, we showed that AuNC@BSA efficiently bind a series of aflatoxin-related mycotoxins as well as the aliphatic mycotoxin FB(1), reporting interactions in the nanomolar range by instantaneous emission change at 680 nm. Such red emission detection is advantageous over current detection strategies for the same mycotoxins, based on complex mass spectrometry procedures or, eventually (upon chemical modification of the mycotoxin), by fluorescence detection in the UV range (<400 nm). The later technique yields fluorescence strongly overlapping with the intrinsic absorption and emission of biorelevant mixtures in which mycotoxins appear. Thus, here we present a new approach using the AuNC@BSA red fluorescence reporter for mycotoxins as a fast, cheap, and simple detection technique that offers significant advantages over currently available methods. |
---|