Cargando…
MLWAN: Multi-Scale Learning Wavelet Attention Module Network for Image Super Resolution
Image super resolution (SR) is an important image processing technique in computer vision to improve the resolution of images and videos. In recent years, deep convolutional neural network (CNN) has made significant progress in the field of image SR; however, the existing CNN-based SR methods cannot...
Autores principales: | Ma, Jian, Han, Xiyu, Zhang, Xiaoyin, Li, Zhipeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741030/ https://www.ncbi.nlm.nih.gov/pubmed/36501811 http://dx.doi.org/10.3390/s22239110 |
Ejemplares similares
-
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
por: Zhang, Min, et al.
Publicado: (2021) -
Wavelet Frequency Separation Attention Network for Chest X-ray Image Super-Resolution
por: Yu, Yue, et al.
Publicado: (2021) -
Super-Resolution Network with Information Distillation and Multi-Scale Attention for Medical CT Image
por: Zhao, Tianliu, et al.
Publicado: (2021) -
Super resolution reconstruction of CT images based on multi-scale attention mechanism
por: Yin, Jian, et al.
Publicado: (2023) -
Multi-phase attention network for face super-resolution
por: Hu, Tao, et al.
Publicado: (2023)