Cargando…
Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network
The remaining useful life (RUL) prediction is important for improving the safety, supportability, maintainability, and reliability of modern industrial equipment. The traditional data-driven rolling bearing RUL prediction methods require a substantial amount of prior knowledge to extract degraded fe...
Autores principales: | Wang, Haitao, Yang, Jie, Shi, Lichen, Wang, Ruihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741091/ https://www.ncbi.nlm.nih.gov/pubmed/36501790 http://dx.doi.org/10.3390/s22239088 |
Ejemplares similares
-
Remaining Useful Life Prognostics of Bearings Based on a Novel Spatial Graph-Temporal Convolution Network
por: Li, Peihong, et al.
Publicado: (2021) -
Temporal Convolutional Networks for the Advance Prediction of ENSO
por: Yan, Jining, et al.
Publicado: (2020) -
Remaining Useful Life Prediction from 3D Scan Data with Genetically Optimized Convolutional Neural Networks
por: Diraco, Giovanni, et al.
Publicado: (2021) -
Data-driven remaining useful life prediction based on domain adaptation
por: Wen, Bin cheng, et al.
Publicado: (2021) -
Mechanism of Shrinkage in Compacted Graphite Iron and Prediction of Shrinkage Tendency
por: Liu, Zeyu, et al.
Publicado: (2022)