Cargando…

Peculiarities of Scattering of Ultrashort Laser Pulses on DNA and RNA Trinucleotides

Currently, X-ray diffraction analysis (XRD) with high spatial and time resolution (TR-XRD) is based on the known theory of X-ray scattering, where the main parameter of USP—its duration—is not taken into account. In the present work, it is shown that, for scattering of attosecond USPs on DNA and RNA...

Descripción completa

Detalles Bibliográficos
Autores principales: Makarov, Dmitry, Kharlamova, Anastasia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741197/
https://www.ncbi.nlm.nih.gov/pubmed/36499759
http://dx.doi.org/10.3390/ijms232315417
Descripción
Sumario:Currently, X-ray diffraction analysis (XRD) with high spatial and time resolution (TR-XRD) is based on the known theory of X-ray scattering, where the main parameter of USP—its duration—is not taken into account. In the present work, it is shown that, for scattering of attosecond USPs on DNA and RNA trinucleotides, the pulse length is the most important scattering parameter. The diffraction pattern changes considerably in comparison with the previously known scattering theory. The obtained results are extremely important in TR-XRD when using attosecond pulses to study trinucleotides of DNA and RNA, because with the previously known scattering theory, which does not take into account the duration of USP, one cannot correctly interpret, and therefore “decode”, DNA and RNA structures.