Cargando…

Dual CXCR4/IL-10 Gene-Edited Human Amniotic Mesenchymal Stem Cells Exhibit Robust Therapeutic Properties in Chronic Wound Healing

Although stem cells have attracted attention as a novel therapeutic solution for tissue regeneration, their minimal efficacy remains controversial. In the present study, we aimed to investigate the enhanced therapeutic property of CXCR4/IL-10 dual angiogenic/anti-inflammatory gene knock-in amniotic...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Seong-Ho, Chae, Dong-Sik, Kim, Sung-Whan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741220/
https://www.ncbi.nlm.nih.gov/pubmed/36499667
http://dx.doi.org/10.3390/ijms232315338
Descripción
Sumario:Although stem cells have attracted attention as a novel therapeutic solution for tissue regeneration, their minimal efficacy remains controversial. In the present study, we aimed to investigate the enhanced therapeutic property of CXCR4/IL-10 dual angiogenic/anti-inflammatory gene knock-in amniotic mesenchymal stem cells (AMM) in a wound-healing model. Dual CXCR4 and IL-10 genes were inserted into the AMM genome using transcription-activator-like effector nuclease (TALEN). Matrigel tube formation and anti-inflammatory effects were assessed in vitro, and efficacy was tested in vivo in a diabetic wound-healing model. CXCR4/IL-10-expressing amniotic MSCs (AMM/CI) strongly expressed CXCR4 and IL-10 genes and robustly promoted tube formation and anti-inflammatory potential. AMM/CI transplantation resulted in accelerated wound healing, as well as high engraftment and re-epithelialization potential. Transplanted AMM/CI also exhibited high angiogenic and decreased pro-inflammatory gene expression in the wound tissue, indicating direct therapeutic effects on wound healing. Taken together, these data indicate that dual angiogenic/anti-inflammatory gene knock-in may be a novel approach to enhance the therapeutic effects of stem cells, and transplantation of AMM/CI can be an alternative therapeutic option in chronic wound healing.