Cargando…
A Novel Functional Electrical Stimulation-Induced Cycling Controller Using Reinforcement Learning to Optimize Online Muscle Activation Pattern
This study introduces a novel controller based on a Reinforcement Learning (RL) algorithm for real-time adaptation of the stimulation pattern during FES-cycling. Core to our approach is the introduction of an RL agent that interacts with the cycling environment and learns through trial and error how...
Autores principales: | Coelho-Magalhães, Tiago, Azevedo Coste, Christine, Resende-Martins, Henrique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741342/ https://www.ncbi.nlm.nih.gov/pubmed/36501826 http://dx.doi.org/10.3390/s22239126 |
Ejemplares similares
-
Development of a High-Power Capacity Open Source Electrical Stimulation System to Enhance Research into FES-Assisted Devices: Validation of FES Cycling
por: Coelho-Magalhães, Tiago, et al.
Publicado: (2022) -
OIDA: An optimal interval detection algorithm for automatized determination of stimulation patterns for FES-Cycling in individuals with SCI
por: Schmoll, Martin, et al.
Publicado: (2022) -
Continuous gait cycle index estimation for electrical stimulation assisted foot drop correction
por: Azevedo Coste, Christine, et al.
Publicado: (2014) -
Standardizing fatigue-resistance testing during electrical stimulation of paralysed human quadriceps muscles, a practical approach
por: Schmoll, Martin, et al.
Publicado: (2021) -
Comparison of strategies and performance of functional electrical stimulation cycling in spinal cord injury pilots for competition in the first ever CYBATHLON
por: Coste, Christine Azevedo, et al.
Publicado: (2017)