Cargando…
Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis
Assessing the mycorrhization level in plant roots is essential to study the effect of arbuscular mycorrhizal fungi (AMF) on plant physiological responses. Common methods used to quantify the mycorrhization of roots are based on microscopic visualization of stained fungal structures within the cortic...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741363/ https://www.ncbi.nlm.nih.gov/pubmed/36501279 http://dx.doi.org/10.3390/plants11233237 |
_version_ | 1784848301273645056 |
---|---|
author | Duret, Morgane Zhan, Xi Belval, Lorène Le Jeune, Christine Hussenet, Réjane Laloue, Hélène Bertsch, Christophe Chong, Julie Deglène-Benbrahim, Laurence Valat, Laure |
author_facet | Duret, Morgane Zhan, Xi Belval, Lorène Le Jeune, Christine Hussenet, Réjane Laloue, Hélène Bertsch, Christophe Chong, Julie Deglène-Benbrahim, Laurence Valat, Laure |
author_sort | Duret, Morgane |
collection | PubMed |
description | Assessing the mycorrhization level in plant roots is essential to study the effect of arbuscular mycorrhizal fungi (AMF) on plant physiological responses. Common methods used to quantify the mycorrhization of roots are based on microscopic visualization of stained fungal structures within the cortical cells. While this method is readily accessible, it remains time-consuming and does not allow checking of the symbiosis vitality. The aim of this work is thus to develop an efficient method for assessing the intensity and vitality of mycorrhiza associated with grapevine through gene expression analyses by RT-qPCR. To this end, grapevine plants were inoculated with the AMF Rhizophagus irregularis (Ri). The relationship between mycorrhization level, assessed by microscopy, and expression of several fungus and grapevine genes involved in the symbiosis was investigated. In AMF-inoculated plants, transcript amounts of fungal constitutively-expressed genes Ri18S, RiTEF1α and RiαTub were significantly correlated to mycorrhization intensity, particularly Ri18S. Grapevine (VvPht1.1 and VvPht1.2) and AMF (GintPT, Ri14-3-3 and RiCRN1) genes, known to be specifically expressed during the mycorrhizal process, were significantly correlated to arbuscular level in the whole root system determined by microscopy. The best correlations were obtained with GintPT on the fungal side and VvPht1.2 on the plant side. Despite some minor discrepancies between microscopic and molecular techniques, the monitoring of Ri18S, GintPT and VvPht1.2 gene expression could be a rapid, robust and reliable method to evaluate the level of mycorrhization and to assess the vitality of AMF. It appears particularly useful to identify AMF-inoculated plants with very low colonization level, or with non-active fungal structures. Moreover, it can be implemented simultaneously with the expression analysis of other genes of interest, saving time compared to microscopic analyses. |
format | Online Article Text |
id | pubmed-9741363 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97413632022-12-11 Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis Duret, Morgane Zhan, Xi Belval, Lorène Le Jeune, Christine Hussenet, Réjane Laloue, Hélène Bertsch, Christophe Chong, Julie Deglène-Benbrahim, Laurence Valat, Laure Plants (Basel) Technical Note Assessing the mycorrhization level in plant roots is essential to study the effect of arbuscular mycorrhizal fungi (AMF) on plant physiological responses. Common methods used to quantify the mycorrhization of roots are based on microscopic visualization of stained fungal structures within the cortical cells. While this method is readily accessible, it remains time-consuming and does not allow checking of the symbiosis vitality. The aim of this work is thus to develop an efficient method for assessing the intensity and vitality of mycorrhiza associated with grapevine through gene expression analyses by RT-qPCR. To this end, grapevine plants were inoculated with the AMF Rhizophagus irregularis (Ri). The relationship between mycorrhization level, assessed by microscopy, and expression of several fungus and grapevine genes involved in the symbiosis was investigated. In AMF-inoculated plants, transcript amounts of fungal constitutively-expressed genes Ri18S, RiTEF1α and RiαTub were significantly correlated to mycorrhization intensity, particularly Ri18S. Grapevine (VvPht1.1 and VvPht1.2) and AMF (GintPT, Ri14-3-3 and RiCRN1) genes, known to be specifically expressed during the mycorrhizal process, were significantly correlated to arbuscular level in the whole root system determined by microscopy. The best correlations were obtained with GintPT on the fungal side and VvPht1.2 on the plant side. Despite some minor discrepancies between microscopic and molecular techniques, the monitoring of Ri18S, GintPT and VvPht1.2 gene expression could be a rapid, robust and reliable method to evaluate the level of mycorrhization and to assess the vitality of AMF. It appears particularly useful to identify AMF-inoculated plants with very low colonization level, or with non-active fungal structures. Moreover, it can be implemented simultaneously with the expression analysis of other genes of interest, saving time compared to microscopic analyses. MDPI 2022-11-25 /pmc/articles/PMC9741363/ /pubmed/36501279 http://dx.doi.org/10.3390/plants11233237 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Technical Note Duret, Morgane Zhan, Xi Belval, Lorène Le Jeune, Christine Hussenet, Réjane Laloue, Hélène Bertsch, Christophe Chong, Julie Deglène-Benbrahim, Laurence Valat, Laure Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis |
title | Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis |
title_full | Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis |
title_fullStr | Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis |
title_full_unstemmed | Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis |
title_short | Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis |
title_sort | use of a rt-qpcr method to estimate mycorrhization intensity and symbiosis vitality in grapevine plants inoculated with rhizophagus irregularis |
topic | Technical Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741363/ https://www.ncbi.nlm.nih.gov/pubmed/36501279 http://dx.doi.org/10.3390/plants11233237 |
work_keys_str_mv | AT duretmorgane useofartqpcrmethodtoestimatemycorrhizationintensityandsymbiosisvitalityingrapevineplantsinoculatedwithrhizophagusirregularis AT zhanxi useofartqpcrmethodtoestimatemycorrhizationintensityandsymbiosisvitalityingrapevineplantsinoculatedwithrhizophagusirregularis AT belvallorene useofartqpcrmethodtoestimatemycorrhizationintensityandsymbiosisvitalityingrapevineplantsinoculatedwithrhizophagusirregularis AT lejeunechristine useofartqpcrmethodtoestimatemycorrhizationintensityandsymbiosisvitalityingrapevineplantsinoculatedwithrhizophagusirregularis AT hussenetrejane useofartqpcrmethodtoestimatemycorrhizationintensityandsymbiosisvitalityingrapevineplantsinoculatedwithrhizophagusirregularis AT lalouehelene useofartqpcrmethodtoestimatemycorrhizationintensityandsymbiosisvitalityingrapevineplantsinoculatedwithrhizophagusirregularis AT bertschchristophe useofartqpcrmethodtoestimatemycorrhizationintensityandsymbiosisvitalityingrapevineplantsinoculatedwithrhizophagusirregularis AT chongjulie useofartqpcrmethodtoestimatemycorrhizationintensityandsymbiosisvitalityingrapevineplantsinoculatedwithrhizophagusirregularis AT deglenebenbrahimlaurence useofartqpcrmethodtoestimatemycorrhizationintensityandsymbiosisvitalityingrapevineplantsinoculatedwithrhizophagusirregularis AT valatlaure useofartqpcrmethodtoestimatemycorrhizationintensityandsymbiosisvitalityingrapevineplantsinoculatedwithrhizophagusirregularis |