Cargando…
Machine Learning-Based Air-to-Ground Channel Model Selection Method for UAV Communications Using Digital Surface Model Data
This paper proposes an automatic air-to-ground (A2G) channel model selection method based on machine learning (ML) using digital surface model (DSM) terrain data. In order to verify whether a communication network for a new non-terrestrial user service such as Urban Air Mobility (UAM) satisfies the...
Autores principales: | Kang, Young-Eun, Jung, Young-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741395/ https://www.ncbi.nlm.nih.gov/pubmed/36501936 http://dx.doi.org/10.3390/s22239234 |
Ejemplares similares
-
Modeling and Performance Analysis of Opportunistic Link Selection for UAV Communication
por: Xu, Zhengjia, et al.
Publicado: (2021) -
A Geometry-Based Beamforming Channel Model for UAV mmWave Communications
por: Mao, Kai, et al.
Publicado: (2020) -
Multifunctional Ground Control Points with a Wireless Network for Communication with a UAV
por: Han, Xiongzhe, et al.
Publicado: (2019) -
Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data
por: Han, Liang, et al.
Publicado: (2019) -
Channel Characterization and Modeling for 6G UAV-Assisted Emergency Communications in Complicated Mountainous Scenarios
por: Zhang, Zhaolei, et al.
Publicado: (2023)