Cargando…
Pathfinder-Driven Chemical Space Exploration and Multiparameter Optimization in Tandem with Glide/IFD and QSAR-Based Active Learning Approach to Prioritize Design Ideas for FEP+ Calculations of SARS-CoV-2 PL(pro) Inhibitors
A global pandemic caused by the SARS-CoV-2 virus that started in 2020 and has wreaked havoc on humanity still ravages up until now. As a result, the negative impact of travel restrictions and lockdowns has underscored the importance of our preparedness for future pandemics. The main thrust of this w...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741453/ https://www.ncbi.nlm.nih.gov/pubmed/36500659 http://dx.doi.org/10.3390/molecules27238569 |
_version_ | 1784848323950149632 |
---|---|
author | Gumede, Njabulo Joyfull |
author_facet | Gumede, Njabulo Joyfull |
author_sort | Gumede, Njabulo Joyfull |
collection | PubMed |
description | A global pandemic caused by the SARS-CoV-2 virus that started in 2020 and has wreaked havoc on humanity still ravages up until now. As a result, the negative impact of travel restrictions and lockdowns has underscored the importance of our preparedness for future pandemics. The main thrust of this work was based on addressing this need by traversing chemical space to design inhibitors that target the SARS-CoV-2 papain-like protease (PL(pro)). Pathfinder-based retrosynthesis analysis was used to generate analogs of GRL-0617 using commercially available building blocks by replacing the naphthalene moiety. A total of 10 models were built using active learning QSAR, which achieved good statistical results such as an R(2) > 0.70, Q(2) > 0.64, STD Dev < 0.30, and RMSE < 0.31, on average for all models. A total of 35 ideas were further prioritized for FEP+ calculations. The FEP+ results revealed that compound 45 was the most active compound in this series with a ΔG of −7.28 ± 0.96 kcal/mol. Compound 5 exhibited a ΔG of −6.78 ± 1.30 kcal/mol. The inactive compounds in this series were compound 91 and compound 23 with a ΔG of −5.74 ± 1.06 and −3.11 ± 1.45 kcal/mol. The combined strategy employed here is envisaged to be of great utility in multiparameter lead optimization efforts, to traverse chemical space, maintaining and/or improving the potency as well as the property space of synthetically aware design ideas. |
format | Online Article Text |
id | pubmed-9741453 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97414532022-12-11 Pathfinder-Driven Chemical Space Exploration and Multiparameter Optimization in Tandem with Glide/IFD and QSAR-Based Active Learning Approach to Prioritize Design Ideas for FEP+ Calculations of SARS-CoV-2 PL(pro) Inhibitors Gumede, Njabulo Joyfull Molecules Article A global pandemic caused by the SARS-CoV-2 virus that started in 2020 and has wreaked havoc on humanity still ravages up until now. As a result, the negative impact of travel restrictions and lockdowns has underscored the importance of our preparedness for future pandemics. The main thrust of this work was based on addressing this need by traversing chemical space to design inhibitors that target the SARS-CoV-2 papain-like protease (PL(pro)). Pathfinder-based retrosynthesis analysis was used to generate analogs of GRL-0617 using commercially available building blocks by replacing the naphthalene moiety. A total of 10 models were built using active learning QSAR, which achieved good statistical results such as an R(2) > 0.70, Q(2) > 0.64, STD Dev < 0.30, and RMSE < 0.31, on average for all models. A total of 35 ideas were further prioritized for FEP+ calculations. The FEP+ results revealed that compound 45 was the most active compound in this series with a ΔG of −7.28 ± 0.96 kcal/mol. Compound 5 exhibited a ΔG of −6.78 ± 1.30 kcal/mol. The inactive compounds in this series were compound 91 and compound 23 with a ΔG of −5.74 ± 1.06 and −3.11 ± 1.45 kcal/mol. The combined strategy employed here is envisaged to be of great utility in multiparameter lead optimization efforts, to traverse chemical space, maintaining and/or improving the potency as well as the property space of synthetically aware design ideas. MDPI 2022-12-05 /pmc/articles/PMC9741453/ /pubmed/36500659 http://dx.doi.org/10.3390/molecules27238569 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gumede, Njabulo Joyfull Pathfinder-Driven Chemical Space Exploration and Multiparameter Optimization in Tandem with Glide/IFD and QSAR-Based Active Learning Approach to Prioritize Design Ideas for FEP+ Calculations of SARS-CoV-2 PL(pro) Inhibitors |
title | Pathfinder-Driven Chemical Space Exploration and Multiparameter Optimization in Tandem with Glide/IFD and QSAR-Based Active Learning Approach to Prioritize Design Ideas for FEP+ Calculations of SARS-CoV-2 PL(pro) Inhibitors |
title_full | Pathfinder-Driven Chemical Space Exploration and Multiparameter Optimization in Tandem with Glide/IFD and QSAR-Based Active Learning Approach to Prioritize Design Ideas for FEP+ Calculations of SARS-CoV-2 PL(pro) Inhibitors |
title_fullStr | Pathfinder-Driven Chemical Space Exploration and Multiparameter Optimization in Tandem with Glide/IFD and QSAR-Based Active Learning Approach to Prioritize Design Ideas for FEP+ Calculations of SARS-CoV-2 PL(pro) Inhibitors |
title_full_unstemmed | Pathfinder-Driven Chemical Space Exploration and Multiparameter Optimization in Tandem with Glide/IFD and QSAR-Based Active Learning Approach to Prioritize Design Ideas for FEP+ Calculations of SARS-CoV-2 PL(pro) Inhibitors |
title_short | Pathfinder-Driven Chemical Space Exploration and Multiparameter Optimization in Tandem with Glide/IFD and QSAR-Based Active Learning Approach to Prioritize Design Ideas for FEP+ Calculations of SARS-CoV-2 PL(pro) Inhibitors |
title_sort | pathfinder-driven chemical space exploration and multiparameter optimization in tandem with glide/ifd and qsar-based active learning approach to prioritize design ideas for fep+ calculations of sars-cov-2 pl(pro) inhibitors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741453/ https://www.ncbi.nlm.nih.gov/pubmed/36500659 http://dx.doi.org/10.3390/molecules27238569 |
work_keys_str_mv | AT gumedenjabulojoyfull pathfinderdrivenchemicalspaceexplorationandmultiparameteroptimizationintandemwithglideifdandqsarbasedactivelearningapproachtoprioritizedesignideasforfepcalculationsofsarscov2plproinhibitors |