Cargando…
Predicting an unstable tear film through artificial intelligence
Dry eye disease is one of the most common ophthalmological complaints and is defined by a loss of tear film homeostasis. Establishing a diagnosis can be time-consuming, resource demanding and unpleasant for the patient. In this pilot study, we retrospectively included clinical data from 431 patients...
Autores principales: | Fineide, Fredrik, Storås, Andrea Marheim, Chen, Xiangjun, Magnø, Morten S., Yazidi, Anis, Riegler, Michael A., Utheim, Tor Paaske |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741582/ https://www.ncbi.nlm.nih.gov/pubmed/36496510 http://dx.doi.org/10.1038/s41598-022-25821-y |
Ejemplares similares
-
Characterization of Lipids in Saliva, Tears and Minor Salivary Glands of Sjögren’s Syndrome Patients Using an HPLC/MS-Based Approach
por: Fineide, Fredrik, et al.
Publicado: (2021) -
Alterations in meibomian glands in patients treated with intensity-modulated radiotherapy for head and neck cancer
por: Chen, Xiangjun, et al.
Publicado: (2021) -
Tear and Saliva Metabolomics in Evaporative Dry Eye Disease in Females
por: Fineide, Fredrik A., et al.
Publicado: (2023) -
Tear Film Break-Up Time and Dry Eye Disease Severity in a Large Norwegian Cohort
por: Yazdani, Mazyar, et al.
Publicado: (2021) -
Utility of Tear Osmolarity Measurement in Diagnosis of Dry Eye Disease
por: Tashbayev, Bezhod, et al.
Publicado: (2020)