Cargando…

ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset

Magnetic resonance imaging (MRI) is an important imaging modality in stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. The Ischemic Stroke Lesion Segmentation (ISLES) challenge is a continuous effort to develop and identify benchmark met...

Descripción completa

Detalles Bibliográficos
Autores principales: Hernandez Petzsche, Moritz R., de la Rosa, Ezequiel, Hanning, Uta, Wiest, Roland, Valenzuela, Waldo, Reyes, Mauricio, Meyer, Maria, Liew, Sook-Lei, Kofler, Florian, Ezhov, Ivan, Robben, David, Hutton, Alexandre, Friedrich, Tassilo, Zarth, Teresa, Bürkle, Johannes, Baran, The Anh, Menze, Björn, Broocks, Gabriel, Meyer, Lukas, Zimmer, Claus, Boeckh-Behrens, Tobias, Berndt, Maria, Ikenberg, Benno, Wiestler, Benedikt, Kirschke, Jan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741583/
https://www.ncbi.nlm.nih.gov/pubmed/36496501
http://dx.doi.org/10.1038/s41597-022-01875-5
_version_ 1784848355262726144
author Hernandez Petzsche, Moritz R.
de la Rosa, Ezequiel
Hanning, Uta
Wiest, Roland
Valenzuela, Waldo
Reyes, Mauricio
Meyer, Maria
Liew, Sook-Lei
Kofler, Florian
Ezhov, Ivan
Robben, David
Hutton, Alexandre
Friedrich, Tassilo
Zarth, Teresa
Bürkle, Johannes
Baran, The Anh
Menze, Björn
Broocks, Gabriel
Meyer, Lukas
Zimmer, Claus
Boeckh-Behrens, Tobias
Berndt, Maria
Ikenberg, Benno
Wiestler, Benedikt
Kirschke, Jan S.
author_facet Hernandez Petzsche, Moritz R.
de la Rosa, Ezequiel
Hanning, Uta
Wiest, Roland
Valenzuela, Waldo
Reyes, Mauricio
Meyer, Maria
Liew, Sook-Lei
Kofler, Florian
Ezhov, Ivan
Robben, David
Hutton, Alexandre
Friedrich, Tassilo
Zarth, Teresa
Bürkle, Johannes
Baran, The Anh
Menze, Björn
Broocks, Gabriel
Meyer, Lukas
Zimmer, Claus
Boeckh-Behrens, Tobias
Berndt, Maria
Ikenberg, Benno
Wiestler, Benedikt
Kirschke, Jan S.
author_sort Hernandez Petzsche, Moritz R.
collection PubMed
description Magnetic resonance imaging (MRI) is an important imaging modality in stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. The Ischemic Stroke Lesion Segmentation (ISLES) challenge is a continuous effort to develop and identify benchmark methods for acute and sub-acute ischemic stroke lesion segmentation. Here we introduce an expert-annotated, multicenter MRI dataset for segmentation of acute to subacute stroke lesions (10.5281/zenodo.7153326). This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location. It is split into a training dataset of n = 250 and a test dataset of n = 150. All training data is publicly available. The test dataset will be used for model validation only and will not be released to the public. This dataset serves as the foundation of the ISLES 2022 challenge (https://www.isles-challenge.org/) with the goal of finding algorithmic methods to enable the development and benchmarking of automatic, robust and accurate segmentation methods for ischemic stroke.
format Online
Article
Text
id pubmed-9741583
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-97415832022-12-12 ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset Hernandez Petzsche, Moritz R. de la Rosa, Ezequiel Hanning, Uta Wiest, Roland Valenzuela, Waldo Reyes, Mauricio Meyer, Maria Liew, Sook-Lei Kofler, Florian Ezhov, Ivan Robben, David Hutton, Alexandre Friedrich, Tassilo Zarth, Teresa Bürkle, Johannes Baran, The Anh Menze, Björn Broocks, Gabriel Meyer, Lukas Zimmer, Claus Boeckh-Behrens, Tobias Berndt, Maria Ikenberg, Benno Wiestler, Benedikt Kirschke, Jan S. Sci Data Data Descriptor Magnetic resonance imaging (MRI) is an important imaging modality in stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. The Ischemic Stroke Lesion Segmentation (ISLES) challenge is a continuous effort to develop and identify benchmark methods for acute and sub-acute ischemic stroke lesion segmentation. Here we introduce an expert-annotated, multicenter MRI dataset for segmentation of acute to subacute stroke lesions (10.5281/zenodo.7153326). This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location. It is split into a training dataset of n = 250 and a test dataset of n = 150. All training data is publicly available. The test dataset will be used for model validation only and will not be released to the public. This dataset serves as the foundation of the ISLES 2022 challenge (https://www.isles-challenge.org/) with the goal of finding algorithmic methods to enable the development and benchmarking of automatic, robust and accurate segmentation methods for ischemic stroke. Nature Publishing Group UK 2022-12-10 /pmc/articles/PMC9741583/ /pubmed/36496501 http://dx.doi.org/10.1038/s41597-022-01875-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Hernandez Petzsche, Moritz R.
de la Rosa, Ezequiel
Hanning, Uta
Wiest, Roland
Valenzuela, Waldo
Reyes, Mauricio
Meyer, Maria
Liew, Sook-Lei
Kofler, Florian
Ezhov, Ivan
Robben, David
Hutton, Alexandre
Friedrich, Tassilo
Zarth, Teresa
Bürkle, Johannes
Baran, The Anh
Menze, Björn
Broocks, Gabriel
Meyer, Lukas
Zimmer, Claus
Boeckh-Behrens, Tobias
Berndt, Maria
Ikenberg, Benno
Wiestler, Benedikt
Kirschke, Jan S.
ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset
title ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset
title_full ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset
title_fullStr ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset
title_full_unstemmed ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset
title_short ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset
title_sort isles 2022: a multi-center magnetic resonance imaging stroke lesion segmentation dataset
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741583/
https://www.ncbi.nlm.nih.gov/pubmed/36496501
http://dx.doi.org/10.1038/s41597-022-01875-5
work_keys_str_mv AT hernandezpetzschemoritzr isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT delarosaezequiel isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT hanninguta isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT wiestroland isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT valenzuelawaldo isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT reyesmauricio isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT meyermaria isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT liewsooklei isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT koflerflorian isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT ezhovivan isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT robbendavid isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT huttonalexandre isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT friedrichtassilo isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT zarthteresa isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT burklejohannes isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT barantheanh isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT menzebjorn isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT broocksgabriel isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT meyerlukas isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT zimmerclaus isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT boeckhbehrenstobias isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT berndtmaria isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT ikenbergbenno isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT wiestlerbenedikt isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset
AT kirschkejans isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset