Cargando…
ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset
Magnetic resonance imaging (MRI) is an important imaging modality in stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. The Ischemic Stroke Lesion Segmentation (ISLES) challenge is a continuous effort to develop and identify benchmark met...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741583/ https://www.ncbi.nlm.nih.gov/pubmed/36496501 http://dx.doi.org/10.1038/s41597-022-01875-5 |
_version_ | 1784848355262726144 |
---|---|
author | Hernandez Petzsche, Moritz R. de la Rosa, Ezequiel Hanning, Uta Wiest, Roland Valenzuela, Waldo Reyes, Mauricio Meyer, Maria Liew, Sook-Lei Kofler, Florian Ezhov, Ivan Robben, David Hutton, Alexandre Friedrich, Tassilo Zarth, Teresa Bürkle, Johannes Baran, The Anh Menze, Björn Broocks, Gabriel Meyer, Lukas Zimmer, Claus Boeckh-Behrens, Tobias Berndt, Maria Ikenberg, Benno Wiestler, Benedikt Kirschke, Jan S. |
author_facet | Hernandez Petzsche, Moritz R. de la Rosa, Ezequiel Hanning, Uta Wiest, Roland Valenzuela, Waldo Reyes, Mauricio Meyer, Maria Liew, Sook-Lei Kofler, Florian Ezhov, Ivan Robben, David Hutton, Alexandre Friedrich, Tassilo Zarth, Teresa Bürkle, Johannes Baran, The Anh Menze, Björn Broocks, Gabriel Meyer, Lukas Zimmer, Claus Boeckh-Behrens, Tobias Berndt, Maria Ikenberg, Benno Wiestler, Benedikt Kirschke, Jan S. |
author_sort | Hernandez Petzsche, Moritz R. |
collection | PubMed |
description | Magnetic resonance imaging (MRI) is an important imaging modality in stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. The Ischemic Stroke Lesion Segmentation (ISLES) challenge is a continuous effort to develop and identify benchmark methods for acute and sub-acute ischemic stroke lesion segmentation. Here we introduce an expert-annotated, multicenter MRI dataset for segmentation of acute to subacute stroke lesions (10.5281/zenodo.7153326). This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location. It is split into a training dataset of n = 250 and a test dataset of n = 150. All training data is publicly available. The test dataset will be used for model validation only and will not be released to the public. This dataset serves as the foundation of the ISLES 2022 challenge (https://www.isles-challenge.org/) with the goal of finding algorithmic methods to enable the development and benchmarking of automatic, robust and accurate segmentation methods for ischemic stroke. |
format | Online Article Text |
id | pubmed-9741583 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-97415832022-12-12 ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset Hernandez Petzsche, Moritz R. de la Rosa, Ezequiel Hanning, Uta Wiest, Roland Valenzuela, Waldo Reyes, Mauricio Meyer, Maria Liew, Sook-Lei Kofler, Florian Ezhov, Ivan Robben, David Hutton, Alexandre Friedrich, Tassilo Zarth, Teresa Bürkle, Johannes Baran, The Anh Menze, Björn Broocks, Gabriel Meyer, Lukas Zimmer, Claus Boeckh-Behrens, Tobias Berndt, Maria Ikenberg, Benno Wiestler, Benedikt Kirschke, Jan S. Sci Data Data Descriptor Magnetic resonance imaging (MRI) is an important imaging modality in stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. The Ischemic Stroke Lesion Segmentation (ISLES) challenge is a continuous effort to develop and identify benchmark methods for acute and sub-acute ischemic stroke lesion segmentation. Here we introduce an expert-annotated, multicenter MRI dataset for segmentation of acute to subacute stroke lesions (10.5281/zenodo.7153326). This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location. It is split into a training dataset of n = 250 and a test dataset of n = 150. All training data is publicly available. The test dataset will be used for model validation only and will not be released to the public. This dataset serves as the foundation of the ISLES 2022 challenge (https://www.isles-challenge.org/) with the goal of finding algorithmic methods to enable the development and benchmarking of automatic, robust and accurate segmentation methods for ischemic stroke. Nature Publishing Group UK 2022-12-10 /pmc/articles/PMC9741583/ /pubmed/36496501 http://dx.doi.org/10.1038/s41597-022-01875-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Data Descriptor Hernandez Petzsche, Moritz R. de la Rosa, Ezequiel Hanning, Uta Wiest, Roland Valenzuela, Waldo Reyes, Mauricio Meyer, Maria Liew, Sook-Lei Kofler, Florian Ezhov, Ivan Robben, David Hutton, Alexandre Friedrich, Tassilo Zarth, Teresa Bürkle, Johannes Baran, The Anh Menze, Björn Broocks, Gabriel Meyer, Lukas Zimmer, Claus Boeckh-Behrens, Tobias Berndt, Maria Ikenberg, Benno Wiestler, Benedikt Kirschke, Jan S. ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset |
title | ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset |
title_full | ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset |
title_fullStr | ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset |
title_full_unstemmed | ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset |
title_short | ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset |
title_sort | isles 2022: a multi-center magnetic resonance imaging stroke lesion segmentation dataset |
topic | Data Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741583/ https://www.ncbi.nlm.nih.gov/pubmed/36496501 http://dx.doi.org/10.1038/s41597-022-01875-5 |
work_keys_str_mv | AT hernandezpetzschemoritzr isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT delarosaezequiel isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT hanninguta isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT wiestroland isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT valenzuelawaldo isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT reyesmauricio isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT meyermaria isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT liewsooklei isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT koflerflorian isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT ezhovivan isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT robbendavid isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT huttonalexandre isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT friedrichtassilo isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT zarthteresa isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT burklejohannes isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT barantheanh isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT menzebjorn isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT broocksgabriel isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT meyerlukas isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT zimmerclaus isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT boeckhbehrenstobias isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT berndtmaria isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT ikenbergbenno isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT wiestlerbenedikt isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset AT kirschkejans isles2022amulticentermagneticresonanceimagingstrokelesionsegmentationdataset |