Cargando…

Rapid and label-free Listeria monocytogenes detection based on stimuli-responsive alginate-platinum thiomer nanobrushes

In this work, we demonstrate the development of a rapid and label-free electrochemical biosensor to detect Listeria monocytogenes using a novel stimulus–response thiomer nanobrush material. Nanobrushes were developed via one-step simultaneous co-deposition of nanoplatinum (Pt) and alginate thiomers...

Descripción completa

Detalles Bibliográficos
Autores principales: Oliveira, Daniela A., McLamore, Eric S., Gomes, Carmen L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741594/
https://www.ncbi.nlm.nih.gov/pubmed/36496515
http://dx.doi.org/10.1038/s41598-022-25753-7
Descripción
Sumario:In this work, we demonstrate the development of a rapid and label-free electrochemical biosensor to detect Listeria monocytogenes using a novel stimulus–response thiomer nanobrush material. Nanobrushes were developed via one-step simultaneous co-deposition of nanoplatinum (Pt) and alginate thiomers (ALG-thiomer). ALG-thiomer/Pt nanobrush platform significantly increased the average electroactive surface area of electrodes by 7 folds and maintained the actuation properties (pH-stimulated osmotic swelling) of the alginate. Dielectric behavior during brush actuation was characterized with positively, neutral, and negatively charged redox probes above and below the isoelectric point of alginate, indicating ALG-thiomer surface charge plays an important role in signal acquisition. The ALG-thiomer platform was biofunctionalized with an aptamer selective for the internalin A protein on Listeria for biosensing applications. Aptamer loading was optimized and various cell capture strategies were investigated (brush extended versus collapsed). Maximum cell capture occurs when the ALG-thiomer/aptamer is in the extended conformation (pH > 3.5), followed by impedance measurement in the collapsed conformation (pH < 3.5). Low concentrations of bacteria (5 CFU mL(−1)) were sensed from a complex food matrix (chicken broth) and selectivity testing against other Gram-positive bacteria (Staphylococcus aureus) indicate the aptamer affinity is maintained, even at these pH values. The new hybrid soft material is among the most efficient and fastest (17 min) for L. monocytogenes biosensing to date, and does not require sample pretreatment, constituting a promising new material platform for sensing small molecules or cells.