Cargando…
Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding
Spatially resolved transcriptomics provides the opportunity to investigate the gene expression profiles and the spatial context of cells in naive state, but at low transcript detection sensitivity or with limited gene throughput. Comprehensive annotating of cell types in spatially resolved transcrip...
Autores principales: | Shen, Rongbo, Liu, Lin, Wu, Zihan, Zhang, Ying, Yuan, Zhiyuan, Guo, Junfu, Yang, Fan, Zhang, Chao, Chen, Bichao, Feng, Wanwan, Liu, Chao, Guo, Jing, Fan, Guozhen, Zhang, Yong, Li, Yuxiang, Xu, Xun, Yao, Jianhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741613/ https://www.ncbi.nlm.nih.gov/pubmed/36496406 http://dx.doi.org/10.1038/s41467-022-35288-0 |
Ejemplares similares
-
Computational Approaches and Challenges in Spatial Transcriptomics
por: Fang, Shuangsang, et al.
Publicado: (2023) -
SpatialDB: a database for spatially resolved transcriptomes
por: Fan, Zhen, et al.
Publicado: (2020) -
Applications of spatially resolved omics in the field of endocrine tumors
por: Hou, Yinuo, et al.
Publicado: (2023) -
SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics
por: Zhu, Jiaqiang, et al.
Publicado: (2023) -
Spatially resolved proteomics via tissue expansion
por: Li, Lu, et al.
Publicado: (2022)