Cargando…
Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies
BACKGROUND: Epidemiological research on dementia is hampered by differences across studies in how dementia is classified, especially where clinical diagnoses of dementia may not be available. OBJECTIVE: We apply structural equation modeling to estimate dementia likelihood across heterogeneous sample...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741742/ https://www.ncbi.nlm.nih.gov/pubmed/36213997 http://dx.doi.org/10.3233/JAD-220472 |
_version_ | 1784848381315645440 |
---|---|
author | Beam, Christopher R. Luczak, Susan E. Panizzon, Matthew S. Reynolds, Chandra A. Christensen, Kaare Dahl Aslan, Anna K. Elman, Jeremy A. Franz, Carol E. Kremen, William S. Lee, Teresa Nygaard, Marianne Sachdev, Perminder S. Whitfield, Keith E. Pedersen, Nancy L. Gatz, Margaret |
author_facet | Beam, Christopher R. Luczak, Susan E. Panizzon, Matthew S. Reynolds, Chandra A. Christensen, Kaare Dahl Aslan, Anna K. Elman, Jeremy A. Franz, Carol E. Kremen, William S. Lee, Teresa Nygaard, Marianne Sachdev, Perminder S. Whitfield, Keith E. Pedersen, Nancy L. Gatz, Margaret |
author_sort | Beam, Christopher R. |
collection | PubMed |
description | BACKGROUND: Epidemiological research on dementia is hampered by differences across studies in how dementia is classified, especially where clinical diagnoses of dementia may not be available. OBJECTIVE: We apply structural equation modeling to estimate dementia likelihood across heterogeneous samples within a multi-study consortium and use the twin design of the sample to validate the results. METHODS: Using 10 twin studies, we implement a latent variable approach that aligns different tests available in each study to assess cognitive, memory, and functional ability. The model separates general cognitive ability from components indicative of dementia. We examine the validity of this continuous latent dementia index (LDI). We then identify cut-off points along the LDI distributions in each study and align them across studies to distinguish individuals with and without probable dementia. Finally, we validate the LDI by determining its heritability and estimating genetic and environmental correlations between the LDI and clinically diagnosed dementia where available. RESULTS: Results indicate that coordinated estimation of LDI across 10 studies has validity against clinically diagnosed dementia. The LDI can be fit to heterogeneous sets of memory, other cognitive, and functional ability variables to extract a score reflective of likelihood of dementia that can be interpreted similarly across studies despite diverse study designs and sampling characteristics. Finally, the same genetic sources of variance strongly contribute to both the LDI and clinical diagnosis. CONCLUSION: This latent dementia indicator approach may serve as a model for other research consortia confronted with similar data integration challenges. |
format | Online Article Text |
id | pubmed-9741742 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | IOS Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-97417422023-01-04 Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies Beam, Christopher R. Luczak, Susan E. Panizzon, Matthew S. Reynolds, Chandra A. Christensen, Kaare Dahl Aslan, Anna K. Elman, Jeremy A. Franz, Carol E. Kremen, William S. Lee, Teresa Nygaard, Marianne Sachdev, Perminder S. Whitfield, Keith E. Pedersen, Nancy L. Gatz, Margaret J Alzheimers Dis Research Article BACKGROUND: Epidemiological research on dementia is hampered by differences across studies in how dementia is classified, especially where clinical diagnoses of dementia may not be available. OBJECTIVE: We apply structural equation modeling to estimate dementia likelihood across heterogeneous samples within a multi-study consortium and use the twin design of the sample to validate the results. METHODS: Using 10 twin studies, we implement a latent variable approach that aligns different tests available in each study to assess cognitive, memory, and functional ability. The model separates general cognitive ability from components indicative of dementia. We examine the validity of this continuous latent dementia index (LDI). We then identify cut-off points along the LDI distributions in each study and align them across studies to distinguish individuals with and without probable dementia. Finally, we validate the LDI by determining its heritability and estimating genetic and environmental correlations between the LDI and clinically diagnosed dementia where available. RESULTS: Results indicate that coordinated estimation of LDI across 10 studies has validity against clinically diagnosed dementia. The LDI can be fit to heterogeneous sets of memory, other cognitive, and functional ability variables to extract a score reflective of likelihood of dementia that can be interpreted similarly across studies despite diverse study designs and sampling characteristics. Finally, the same genetic sources of variance strongly contribute to both the LDI and clinical diagnosis. CONCLUSION: This latent dementia indicator approach may serve as a model for other research consortia confronted with similar data integration challenges. IOS Press 2022-11-22 /pmc/articles/PMC9741742/ /pubmed/36213997 http://dx.doi.org/10.3233/JAD-220472 Text en © 2022 – The authors. Published by IOS Press https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/) , which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Beam, Christopher R. Luczak, Susan E. Panizzon, Matthew S. Reynolds, Chandra A. Christensen, Kaare Dahl Aslan, Anna K. Elman, Jeremy A. Franz, Carol E. Kremen, William S. Lee, Teresa Nygaard, Marianne Sachdev, Perminder S. Whitfield, Keith E. Pedersen, Nancy L. Gatz, Margaret Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies |
title | Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies |
title_full | Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies |
title_fullStr | Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies |
title_full_unstemmed | Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies |
title_short | Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies |
title_sort | estimating likelihood of dementia in the absence of diagnostic data: a latent dementia index in 10 genetically informed studies |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741742/ https://www.ncbi.nlm.nih.gov/pubmed/36213997 http://dx.doi.org/10.3233/JAD-220472 |
work_keys_str_mv | AT beamchristopherr estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT luczaksusane estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT panizzonmatthews estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT reynoldschandraa estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT christensenkaare estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT dahlaslanannak estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT elmanjeremya estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT franzcarole estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT kremenwilliams estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT leeteresa estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT nygaardmarianne estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT sachdevperminders estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT whitfieldkeithe estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT pedersennancyl estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT gatzmargaret estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies AT estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies |