Cargando…

Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies

BACKGROUND: Epidemiological research on dementia is hampered by differences across studies in how dementia is classified, especially where clinical diagnoses of dementia may not be available. OBJECTIVE: We apply structural equation modeling to estimate dementia likelihood across heterogeneous sample...

Descripción completa

Detalles Bibliográficos
Autores principales: Beam, Christopher R., Luczak, Susan E., Panizzon, Matthew S., Reynolds, Chandra A., Christensen, Kaare, Dahl Aslan, Anna K., Elman, Jeremy A., Franz, Carol E., Kremen, William S., Lee, Teresa, Nygaard, Marianne, Sachdev, Perminder S., Whitfield, Keith E., Pedersen, Nancy L., Gatz, Margaret
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741742/
https://www.ncbi.nlm.nih.gov/pubmed/36213997
http://dx.doi.org/10.3233/JAD-220472
_version_ 1784848381315645440
author Beam, Christopher R.
Luczak, Susan E.
Panizzon, Matthew S.
Reynolds, Chandra A.
Christensen, Kaare
Dahl Aslan, Anna K.
Elman, Jeremy A.
Franz, Carol E.
Kremen, William S.
Lee, Teresa
Nygaard, Marianne
Sachdev, Perminder S.
Whitfield, Keith E.
Pedersen, Nancy L.
Gatz, Margaret
author_facet Beam, Christopher R.
Luczak, Susan E.
Panizzon, Matthew S.
Reynolds, Chandra A.
Christensen, Kaare
Dahl Aslan, Anna K.
Elman, Jeremy A.
Franz, Carol E.
Kremen, William S.
Lee, Teresa
Nygaard, Marianne
Sachdev, Perminder S.
Whitfield, Keith E.
Pedersen, Nancy L.
Gatz, Margaret
author_sort Beam, Christopher R.
collection PubMed
description BACKGROUND: Epidemiological research on dementia is hampered by differences across studies in how dementia is classified, especially where clinical diagnoses of dementia may not be available. OBJECTIVE: We apply structural equation modeling to estimate dementia likelihood across heterogeneous samples within a multi-study consortium and use the twin design of the sample to validate the results. METHODS: Using 10 twin studies, we implement a latent variable approach that aligns different tests available in each study to assess cognitive, memory, and functional ability. The model separates general cognitive ability from components indicative of dementia. We examine the validity of this continuous latent dementia index (LDI). We then identify cut-off points along the LDI distributions in each study and align them across studies to distinguish individuals with and without probable dementia. Finally, we validate the LDI by determining its heritability and estimating genetic and environmental correlations between the LDI and clinically diagnosed dementia where available. RESULTS: Results indicate that coordinated estimation of LDI across 10 studies has validity against clinically diagnosed dementia. The LDI can be fit to heterogeneous sets of memory, other cognitive, and functional ability variables to extract a score reflective of likelihood of dementia that can be interpreted similarly across studies despite diverse study designs and sampling characteristics. Finally, the same genetic sources of variance strongly contribute to both the LDI and clinical diagnosis. CONCLUSION: This latent dementia indicator approach may serve as a model for other research consortia confronted with similar data integration challenges.
format Online
Article
Text
id pubmed-9741742
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher IOS Press
record_format MEDLINE/PubMed
spelling pubmed-97417422023-01-04 Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies Beam, Christopher R. Luczak, Susan E. Panizzon, Matthew S. Reynolds, Chandra A. Christensen, Kaare Dahl Aslan, Anna K. Elman, Jeremy A. Franz, Carol E. Kremen, William S. Lee, Teresa Nygaard, Marianne Sachdev, Perminder S. Whitfield, Keith E. Pedersen, Nancy L. Gatz, Margaret J Alzheimers Dis Research Article BACKGROUND: Epidemiological research on dementia is hampered by differences across studies in how dementia is classified, especially where clinical diagnoses of dementia may not be available. OBJECTIVE: We apply structural equation modeling to estimate dementia likelihood across heterogeneous samples within a multi-study consortium and use the twin design of the sample to validate the results. METHODS: Using 10 twin studies, we implement a latent variable approach that aligns different tests available in each study to assess cognitive, memory, and functional ability. The model separates general cognitive ability from components indicative of dementia. We examine the validity of this continuous latent dementia index (LDI). We then identify cut-off points along the LDI distributions in each study and align them across studies to distinguish individuals with and without probable dementia. Finally, we validate the LDI by determining its heritability and estimating genetic and environmental correlations between the LDI and clinically diagnosed dementia where available. RESULTS: Results indicate that coordinated estimation of LDI across 10 studies has validity against clinically diagnosed dementia. The LDI can be fit to heterogeneous sets of memory, other cognitive, and functional ability variables to extract a score reflective of likelihood of dementia that can be interpreted similarly across studies despite diverse study designs and sampling characteristics. Finally, the same genetic sources of variance strongly contribute to both the LDI and clinical diagnosis. CONCLUSION: This latent dementia indicator approach may serve as a model for other research consortia confronted with similar data integration challenges. IOS Press 2022-11-22 /pmc/articles/PMC9741742/ /pubmed/36213997 http://dx.doi.org/10.3233/JAD-220472 Text en © 2022 – The authors. Published by IOS Press https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/) , which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Beam, Christopher R.
Luczak, Susan E.
Panizzon, Matthew S.
Reynolds, Chandra A.
Christensen, Kaare
Dahl Aslan, Anna K.
Elman, Jeremy A.
Franz, Carol E.
Kremen, William S.
Lee, Teresa
Nygaard, Marianne
Sachdev, Perminder S.
Whitfield, Keith E.
Pedersen, Nancy L.
Gatz, Margaret
Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies
title Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies
title_full Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies
title_fullStr Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies
title_full_unstemmed Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies
title_short Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies
title_sort estimating likelihood of dementia in the absence of diagnostic data: a latent dementia index in 10 genetically informed studies
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741742/
https://www.ncbi.nlm.nih.gov/pubmed/36213997
http://dx.doi.org/10.3233/JAD-220472
work_keys_str_mv AT beamchristopherr estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT luczaksusane estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT panizzonmatthews estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT reynoldschandraa estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT christensenkaare estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT dahlaslanannak estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT elmanjeremya estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT franzcarole estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT kremenwilliams estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT leeteresa estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT nygaardmarianne estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT sachdevperminders estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT whitfieldkeithe estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT pedersennancyl estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT gatzmargaret estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies
AT estimatinglikelihoodofdementiaintheabsenceofdiagnosticdataalatentdementiaindexin10geneticallyinformedstudies