Cargando…
Enhancing cancer differentiation with synthetic MRI examinations via generative models: a systematic review
Contemporary deep learning-based decision systems are well-known for requiring high-volume datasets in order to produce generalized, reliable, and high-performing models. However, the collection of such datasets is challenging, requiring time-consuming processes involving also expert clinicians with...
Autores principales: | Dimitriadis, Avtantil, Trivizakis, Eleftherios, Papanikolaou, Nikolaos, Tsiknakis, Manolis, Marias, Kostas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742072/ https://www.ncbi.nlm.nih.gov/pubmed/36503979 http://dx.doi.org/10.1186/s13244-022-01315-3 |
Ejemplares similares
-
Advancing COVID-19 differentiation with a robust preprocessing and integration of multi-institutional open-repository computer tomography datasets for deep learning analysis
por: Trivizakis, Eleftherios, et al.
Publicado: (2020) -
Interpretable artificial intelligence framework for COVID-19 screening on chest X-rays
por: Tsiknakis, Nikos, et al.
Publicado: (2020) -
Deep Radiotranscriptomics of Non-Small Cell Lung Carcinoma for Assessing Molecular and Histology Subtypes with a Data-Driven Analysis
por: Trivizakis, Eleftherios, et al.
Publicado: (2021) -
Artificial intelligence radiogenomics for advancing precision and effectiveness in oncologic care (Review)
por: Trivizakis, Eleftherios, et al.
Publicado: (2020) -
Region-adaptive magnetic resonance image enhancement for improving CNN-based segmentation of the prostate and prostatic zones
por: Zaridis, Dimitrios I., et al.
Publicado: (2023)