Cargando…
A signal recognition particle-related joint model of LASSO regression, SVM-RFE and artificial neural network for the diagnosis of systemic sclerosis-associated pulmonary hypertension
Background: Systemic sclerosis-associated pulmonary hypertension (SSc-PH) is one of the most common causes of death in patients with systemic sclerosis (SSc). The complexity of SSc-PH and the heterogeneity of clinical features in SSc-PH patients contribute to the difficulty of diagnosis. Therefore,...
Autores principales: | Xu, Jingxi, Liang, Chaoyang, Li, Jiangtao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742487/ https://www.ncbi.nlm.nih.gov/pubmed/36518216 http://dx.doi.org/10.3389/fgene.2022.1078200 |
Ejemplares similares
-
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
por: Huang, Mei-Ling, et al.
Publicado: (2014) -
Improving the Performance of SVM-RFE to Select Genes in Microarray Data
por: Ding, Yuanyuan, et al.
Publicado: (2006) -
Prediction of Drought-Resistant Genes in Arabidopsis thaliana Using SVM-RFE
por: Liang, Yanchun, et al.
Publicado: (2011) -
AdaBoost-based multiple SVM-RFE for classification of mammograms in DDSM
por: Yoon, Sejong, et al.
Publicado: (2009) -
Determination of individual factors associated with hallux valgus using SVM-RFE
por: Nakao, Hidetoshi, et al.
Publicado: (2023)