Cargando…

Biofilm formation and inflammatory potential of Staphylococcus saccharolyticus: A possible cause of orthopedic implant-associated infections

Staphylococcus saccharolyticus, a coagulase-negative staphylococcal species, has some unusual characteristics for human-associated staphylococci, such as slow growth and its preference for anoxic culture conditions. This species is a relatively abundant member of the human skin microbiota, but its m...

Descripción completa

Detalles Bibliográficos
Autores principales: Afshar, Mastaneh, Møllebjerg, Andreas, Minero, Gabriel Antonio, Hollensteiner, Jacqueline, Poehlein, Anja, Himmelbach, Axel, Lange, Jeppe, Meyer, Rikke Louise, Brüggemann, Holger
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742538/
https://www.ncbi.nlm.nih.gov/pubmed/36519178
http://dx.doi.org/10.3389/fmicb.2022.1070201
_version_ 1784848542230118400
author Afshar, Mastaneh
Møllebjerg, Andreas
Minero, Gabriel Antonio
Hollensteiner, Jacqueline
Poehlein, Anja
Himmelbach, Axel
Lange, Jeppe
Meyer, Rikke Louise
Brüggemann, Holger
author_facet Afshar, Mastaneh
Møllebjerg, Andreas
Minero, Gabriel Antonio
Hollensteiner, Jacqueline
Poehlein, Anja
Himmelbach, Axel
Lange, Jeppe
Meyer, Rikke Louise
Brüggemann, Holger
author_sort Afshar, Mastaneh
collection PubMed
description Staphylococcus saccharolyticus, a coagulase-negative staphylococcal species, has some unusual characteristics for human-associated staphylococci, such as slow growth and its preference for anoxic culture conditions. This species is a relatively abundant member of the human skin microbiota, but its microbiological properties, as well as the pathogenic potential, have scarcely been investigated so far, despite being occasionally isolated from different types of infections including orthopedic implant-associated infections. Here, we investigated the growth and biofilm properties of clinical isolates of S. saccharolyticus and determined host cell responses. Growth assessments in anoxic and oxic conditions revealed strain-dependent outcomes, as some strains can also grow aerobically. All tested strains of S. saccharolyticus were able to form biofilm in a microtiter plate assay. Strain-dependent differences were determined by optical coherence tomography, revealing that medium supplementation with glucose and sodium chloride enhanced biofilm formation. Visualization of the biofilm by confocal laser scanning microscopy revealed the role of extracellular DNA in the biofilm structure. In addition to attached biofilms, S. saccharolyticus also formed bacterial aggregates at an early stage of growth. Transcriptome analysis of biofilm-grown versus planktonic cells revealed a set of upregulated genes in biofilm-embedded cells, including factors involved in adhesion, colonization, and competition such as epidermin, type I toxin-antitoxin system, and phenol-soluble modulins (beta and epsilon). To investigate consequences for the host after encountering S. saccharolyticus, cytokine profiling and host cell viability were assessed by infection experiments with differentiated THP-1 cells. The microorganism strongly triggered the secretion of the tested pro-inflammatory cyto- and chemokines IL-6, IL-8, and TNF-alpha, determined at 24 h post-infection. S. saccharolyticus was less cytotoxic than Staphylococcus aureus. Taken together, the results indicate that S. saccharolyticus has substantial pathogenic potential. Thus, it can be a potential cause of orthopedic implant-associated infections and other types of deep-seated infections.
format Online
Article
Text
id pubmed-9742538
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-97425382022-12-13 Biofilm formation and inflammatory potential of Staphylococcus saccharolyticus: A possible cause of orthopedic implant-associated infections Afshar, Mastaneh Møllebjerg, Andreas Minero, Gabriel Antonio Hollensteiner, Jacqueline Poehlein, Anja Himmelbach, Axel Lange, Jeppe Meyer, Rikke Louise Brüggemann, Holger Front Microbiol Microbiology Staphylococcus saccharolyticus, a coagulase-negative staphylococcal species, has some unusual characteristics for human-associated staphylococci, such as slow growth and its preference for anoxic culture conditions. This species is a relatively abundant member of the human skin microbiota, but its microbiological properties, as well as the pathogenic potential, have scarcely been investigated so far, despite being occasionally isolated from different types of infections including orthopedic implant-associated infections. Here, we investigated the growth and biofilm properties of clinical isolates of S. saccharolyticus and determined host cell responses. Growth assessments in anoxic and oxic conditions revealed strain-dependent outcomes, as some strains can also grow aerobically. All tested strains of S. saccharolyticus were able to form biofilm in a microtiter plate assay. Strain-dependent differences were determined by optical coherence tomography, revealing that medium supplementation with glucose and sodium chloride enhanced biofilm formation. Visualization of the biofilm by confocal laser scanning microscopy revealed the role of extracellular DNA in the biofilm structure. In addition to attached biofilms, S. saccharolyticus also formed bacterial aggregates at an early stage of growth. Transcriptome analysis of biofilm-grown versus planktonic cells revealed a set of upregulated genes in biofilm-embedded cells, including factors involved in adhesion, colonization, and competition such as epidermin, type I toxin-antitoxin system, and phenol-soluble modulins (beta and epsilon). To investigate consequences for the host after encountering S. saccharolyticus, cytokine profiling and host cell viability were assessed by infection experiments with differentiated THP-1 cells. The microorganism strongly triggered the secretion of the tested pro-inflammatory cyto- and chemokines IL-6, IL-8, and TNF-alpha, determined at 24 h post-infection. S. saccharolyticus was less cytotoxic than Staphylococcus aureus. Taken together, the results indicate that S. saccharolyticus has substantial pathogenic potential. Thus, it can be a potential cause of orthopedic implant-associated infections and other types of deep-seated infections. Frontiers Media S.A. 2022-11-28 /pmc/articles/PMC9742538/ /pubmed/36519178 http://dx.doi.org/10.3389/fmicb.2022.1070201 Text en Copyright © 2022 Afshar, Møllebjerg, Minero, Hollensteiner, Poehlein, Himmelbach, Lange, Meyer and Brüggemann. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Afshar, Mastaneh
Møllebjerg, Andreas
Minero, Gabriel Antonio
Hollensteiner, Jacqueline
Poehlein, Anja
Himmelbach, Axel
Lange, Jeppe
Meyer, Rikke Louise
Brüggemann, Holger
Biofilm formation and inflammatory potential of Staphylococcus saccharolyticus: A possible cause of orthopedic implant-associated infections
title Biofilm formation and inflammatory potential of Staphylococcus saccharolyticus: A possible cause of orthopedic implant-associated infections
title_full Biofilm formation and inflammatory potential of Staphylococcus saccharolyticus: A possible cause of orthopedic implant-associated infections
title_fullStr Biofilm formation and inflammatory potential of Staphylococcus saccharolyticus: A possible cause of orthopedic implant-associated infections
title_full_unstemmed Biofilm formation and inflammatory potential of Staphylococcus saccharolyticus: A possible cause of orthopedic implant-associated infections
title_short Biofilm formation and inflammatory potential of Staphylococcus saccharolyticus: A possible cause of orthopedic implant-associated infections
title_sort biofilm formation and inflammatory potential of staphylococcus saccharolyticus: a possible cause of orthopedic implant-associated infections
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742538/
https://www.ncbi.nlm.nih.gov/pubmed/36519178
http://dx.doi.org/10.3389/fmicb.2022.1070201
work_keys_str_mv AT afsharmastaneh biofilmformationandinflammatorypotentialofstaphylococcussaccharolyticusapossiblecauseoforthopedicimplantassociatedinfections
AT møllebjergandreas biofilmformationandinflammatorypotentialofstaphylococcussaccharolyticusapossiblecauseoforthopedicimplantassociatedinfections
AT minerogabrielantonio biofilmformationandinflammatorypotentialofstaphylococcussaccharolyticusapossiblecauseoforthopedicimplantassociatedinfections
AT hollensteinerjacqueline biofilmformationandinflammatorypotentialofstaphylococcussaccharolyticusapossiblecauseoforthopedicimplantassociatedinfections
AT poehleinanja biofilmformationandinflammatorypotentialofstaphylococcussaccharolyticusapossiblecauseoforthopedicimplantassociatedinfections
AT himmelbachaxel biofilmformationandinflammatorypotentialofstaphylococcussaccharolyticusapossiblecauseoforthopedicimplantassociatedinfections
AT langejeppe biofilmformationandinflammatorypotentialofstaphylococcussaccharolyticusapossiblecauseoforthopedicimplantassociatedinfections
AT meyerrikkelouise biofilmformationandinflammatorypotentialofstaphylococcussaccharolyticusapossiblecauseoforthopedicimplantassociatedinfections
AT bruggemannholger biofilmformationandinflammatorypotentialofstaphylococcussaccharolyticusapossiblecauseoforthopedicimplantassociatedinfections