Cargando…
Decentralized collaborative multi-institutional PET attenuation and scatter correction using federated deep learning
PURPOSE: Attenuation correction and scatter compensation (AC/SC) are two main steps toward quantitative PET imaging, which remain challenging in PET-only and PET/MRI systems. These can be effectively tackled via deep learning (DL) methods. However, trustworthy, and generalizable DL models commonly r...
Autores principales: | Shiri, Isaac, Vafaei Sadr, Alireza, Akhavan, Azadeh, Salimi, Yazdan, Sanaat, Amirhossein, Amini, Mehdi, Razeghi, Behrooz, Saberi, Abdollah, Arabi, Hossein, Ferdowsi, Sohrab, Voloshynovskiy, Slava, Gündüz, Deniz, Rahmim, Arman, Zaidi, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742659/ https://www.ncbi.nlm.nih.gov/pubmed/36508026 http://dx.doi.org/10.1007/s00259-022-06053-8 |
Ejemplares similares
-
High-dimensional multinomial multiclass severity scoring of COVID-19 pneumonia using CT radiomics features and machine learning algorithms
por: Shiri, Isaac, et al.
Publicado: (2022) -
Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models’ Performance and Robustness
por: Sanaat, Amirhossein, et al.
Publicado: (2022) -
Differential privacy preserved federated transfer learning for multi-institutional (68)Ga-PET image artefact detection and disentanglement
por: Shiri, Isaac, et al.
Publicado: (2023) -
Deep‐TOF‐PET: Deep learning‐guided generation of time‐of‐flight from non‐TOF brain PET images in the image and projection domains
por: Sanaat, Amirhossein, et al.
Publicado: (2022) -
Artificial Intelligence–Driven Single-Shot PET Image Artifact Detection and Disentanglement: Toward Routine Clinical Image Quality Assurance
por: Shiri, Isaac, et al.
Publicado: (2023)