Cargando…
Machine Learning Radiomics Model for External and Internal Respiratory Motion Correlation Prediction in Lung Tumor
Objectives: The complexity and specificity of lung tumor motion render it necessary to determine the external and internal correlation individually before applying indirect tumor tracking. However, the correlation cannot be determined from patient respiratory and tumor clinical characteristics befor...
Autores principales: | Zhang, Xiangyu, Song, Xinyu, Li, Guangjun, Duan, Lian, Wang, Guangyu, Dai, Guyu, Song, Ying, Li, Jing, Bai, Sen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742719/ https://www.ncbi.nlm.nih.gov/pubmed/36476136 http://dx.doi.org/10.1177/15330338221143224 |
Ejemplares similares
-
Machine learning for predicting accuracy of lung and liver tumor motion tracking using radiomic features
por: Li, Guangjun, et al.
Publicado: (2023) -
Machine Learning-Based Quality Assurance for Automatic Segmentation
of Head-and-Neck Organs-at-Risk in Radiotherapy
por: Luan, Shunyao, et al.
Publicado: (2023) -
Predictive value of magnetic resonance imaging radiomics-based machine learning for disease progression in patients with high-grade glioma
por: Li, Zhibin, et al.
Publicado: (2022) -
Deep Learning for Patient-Specific Quality Assurance: Predicting Gamma Passing Rates for IMRT Based on Delivery Fluence Informed by log Files
por: Huang, Ying, et al.
Publicado: (2022) -
Correlation of Optical Surface Respiratory Motion Signal and Internal Lung and Liver Tumor Motion: A Retrospective Single-Center Observational Study
por: Wang, Guangyu, et al.
Publicado: (2022)