Cargando…
Predicting emerging SARS-CoV-2 variants of concern through a One Class dynamic anomaly detection algorithm
OBJECTIVES: The objective of this study is the implementation of an automatic procedure to weekly detect new SARS-CoV-2 variants and non-neutral variants (variants of concern (VOC) and variants of interest (VOI)). METHODS: We downloaded spike protein primary sequences from the public resource GISAID...
Autores principales: | Nicora, Giovanna, Salemi, Marco, Marini, Simone, Bellazzi, Riccardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742845/ https://www.ncbi.nlm.nih.gov/pubmed/36593658 http://dx.doi.org/10.1136/bmjhci-2022-100643 |
Ejemplares similares
-
Forecasting dominance of SARS-CoV-2 lineages by anomaly detection using deep AutoEncoders
por: Rancati, Simone, et al.
Publicado: (2023) -
A machine learning approach based on ACMG/AMP guidelines for genomic variant classification and prioritization
por: Nicora, Giovanna, et al.
Publicado: (2022) -
Early Emergence Phase of SARS-CoV-2 Delta Variant in Florida, US
por: Cella, Eleonora, et al.
Publicado: (2022) -
The emerging SARS-CoV-2 variants of concern
por: Sanyaolu, Adekunle, et al.
Publicado: (2021) -
PaPI: pseudo amino acid composition to score human protein-coding variants
por: Limongelli, Ivan, et al.
Publicado: (2015)