Cargando…
Time course of changes in inflammatory and oxidative biomarkers in lung tissue of mice induced by exposure to electronic cigarette aerosol
SIGNIFICANCE: Electronic cigarettes (e-cigarettes) have become a popular way to smoke all over the world. Chronic exposure to e-cigarette aerosol may influence lung health. This study uses an animal model to explore the time course of the effect of exposure to e-cigarette aerosols on the lung. METHO...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742872/ https://www.ncbi.nlm.nih.gov/pubmed/36518450 http://dx.doi.org/10.1016/j.toxrep.2022.07.001 |
_version_ | 1784848613194596352 |
---|---|
author | Alzoubi, Karem H. Khabour, Omar F. Al-Sawalha, Nour A. Karaoghlanian, Nareg Shihadeh, Alan Eissenberg, Thomas |
author_facet | Alzoubi, Karem H. Khabour, Omar F. Al-Sawalha, Nour A. Karaoghlanian, Nareg Shihadeh, Alan Eissenberg, Thomas |
author_sort | Alzoubi, Karem H. |
collection | PubMed |
description | SIGNIFICANCE: Electronic cigarettes (e-cigarettes) have become a popular way to smoke all over the world. Chronic exposure to e-cigarette aerosol may influence lung health. This study uses an animal model to explore the time course of the effect of exposure to e-cigarette aerosols on the lung. METHODS: Lung samples were collected after exposure of Balb/c mice to e-cigarette aerosols for 1 h/day (6 times/week) for 1, 2 and 4 weeks and compared to sham-exposed controls. Examined biomarkers including inflammatory cells, tumor necrosis factor α (TNFα), interleukin-6 (IL-6), interleukin-10 (IL-10), reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione peroxidase (GPx), catalase, superoxide dismutase (SOD), and Thiobarbituric acid reactive substances (TBARS). RESULTS: Exposure of animals to e-cigarette aerosols induced significant increases (P < 0.05) in total inflammatory cells, eosinophils, macrophages and TNFα in the lung tissue after 1, 2 and 4 weeks of exposure. Furthermore, level of IL-10 significantly decreased, whereas levels of neutrophils and basophils significantly increased (P < 0.05) after 1 week of exposure. Exposure of animals to e-cigarette aerosol also induced significant decreases (P < 0.05) in the GSH/GSSG ratio, and GPx levels after 2 and 4 weeks of exposures. The activity of catalase was also reduced (P < 0.05) after 4 weeks of exposure. Level of TBARS showed a trend of elevation with time and it reached a significant elevation after 4 weeks (P < 0.01). CONCLUSION: Current results indicate that inhalation of unflavored e-cigarette aerosol might be associated with inflammation in lung tissue that worsen as the duration of exposure increases. Further experiments including more time points, histopathology and pulmonary physiology experiments are needed to confirm the current results. |
format | Online Article Text |
id | pubmed-9742872 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-97428722022-12-13 Time course of changes in inflammatory and oxidative biomarkers in lung tissue of mice induced by exposure to electronic cigarette aerosol Alzoubi, Karem H. Khabour, Omar F. Al-Sawalha, Nour A. Karaoghlanian, Nareg Shihadeh, Alan Eissenberg, Thomas Toxicol Rep Regular Article SIGNIFICANCE: Electronic cigarettes (e-cigarettes) have become a popular way to smoke all over the world. Chronic exposure to e-cigarette aerosol may influence lung health. This study uses an animal model to explore the time course of the effect of exposure to e-cigarette aerosols on the lung. METHODS: Lung samples were collected after exposure of Balb/c mice to e-cigarette aerosols for 1 h/day (6 times/week) for 1, 2 and 4 weeks and compared to sham-exposed controls. Examined biomarkers including inflammatory cells, tumor necrosis factor α (TNFα), interleukin-6 (IL-6), interleukin-10 (IL-10), reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione peroxidase (GPx), catalase, superoxide dismutase (SOD), and Thiobarbituric acid reactive substances (TBARS). RESULTS: Exposure of animals to e-cigarette aerosols induced significant increases (P < 0.05) in total inflammatory cells, eosinophils, macrophages and TNFα in the lung tissue after 1, 2 and 4 weeks of exposure. Furthermore, level of IL-10 significantly decreased, whereas levels of neutrophils and basophils significantly increased (P < 0.05) after 1 week of exposure. Exposure of animals to e-cigarette aerosol also induced significant decreases (P < 0.05) in the GSH/GSSG ratio, and GPx levels after 2 and 4 weeks of exposures. The activity of catalase was also reduced (P < 0.05) after 4 weeks of exposure. Level of TBARS showed a trend of elevation with time and it reached a significant elevation after 4 weeks (P < 0.01). CONCLUSION: Current results indicate that inhalation of unflavored e-cigarette aerosol might be associated with inflammation in lung tissue that worsen as the duration of exposure increases. Further experiments including more time points, histopathology and pulmonary physiology experiments are needed to confirm the current results. Elsevier 2022-08-05 /pmc/articles/PMC9742872/ /pubmed/36518450 http://dx.doi.org/10.1016/j.toxrep.2022.07.001 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Regular Article Alzoubi, Karem H. Khabour, Omar F. Al-Sawalha, Nour A. Karaoghlanian, Nareg Shihadeh, Alan Eissenberg, Thomas Time course of changes in inflammatory and oxidative biomarkers in lung tissue of mice induced by exposure to electronic cigarette aerosol |
title | Time course of changes in inflammatory and oxidative biomarkers in lung tissue of mice induced by exposure to electronic cigarette aerosol |
title_full | Time course of changes in inflammatory and oxidative biomarkers in lung tissue of mice induced by exposure to electronic cigarette aerosol |
title_fullStr | Time course of changes in inflammatory and oxidative biomarkers in lung tissue of mice induced by exposure to electronic cigarette aerosol |
title_full_unstemmed | Time course of changes in inflammatory and oxidative biomarkers in lung tissue of mice induced by exposure to electronic cigarette aerosol |
title_short | Time course of changes in inflammatory and oxidative biomarkers in lung tissue of mice induced by exposure to electronic cigarette aerosol |
title_sort | time course of changes in inflammatory and oxidative biomarkers in lung tissue of mice induced by exposure to electronic cigarette aerosol |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742872/ https://www.ncbi.nlm.nih.gov/pubmed/36518450 http://dx.doi.org/10.1016/j.toxrep.2022.07.001 |
work_keys_str_mv | AT alzoubikaremh timecourseofchangesininflammatoryandoxidativebiomarkersinlungtissueofmiceinducedbyexposuretoelectroniccigaretteaerosol AT khabouromarf timecourseofchangesininflammatoryandoxidativebiomarkersinlungtissueofmiceinducedbyexposuretoelectroniccigaretteaerosol AT alsawalhanoura timecourseofchangesininflammatoryandoxidativebiomarkersinlungtissueofmiceinducedbyexposuretoelectroniccigaretteaerosol AT karaoghlaniannareg timecourseofchangesininflammatoryandoxidativebiomarkersinlungtissueofmiceinducedbyexposuretoelectroniccigaretteaerosol AT shihadehalan timecourseofchangesininflammatoryandoxidativebiomarkersinlungtissueofmiceinducedbyexposuretoelectroniccigaretteaerosol AT eissenbergthomas timecourseofchangesininflammatoryandoxidativebiomarkersinlungtissueofmiceinducedbyexposuretoelectroniccigaretteaerosol |