Cargando…

The influence of ultraviolet radiation on aflatoxin producing Aspergillus species' isolated from Iranian rice

Cereal grains are a favorable habitat for aflatoxin- producing fungus to develop. the current investigation was carried out to evaluate the quantity and kind of contaminated imported grains and rice generated in the province of Shiraz, Iran. A total of 60 random rice samples were taken from paddy fi...

Descripción completa

Detalles Bibliográficos
Autores principales: Faraji, Hamed, Yazdi, Farideh Tabatabaee, Razmi, Nematollah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742913/
https://www.ncbi.nlm.nih.gov/pubmed/36518428
http://dx.doi.org/10.1016/j.toxrep.2022.07.007
Descripción
Sumario:Cereal grains are a favorable habitat for aflatoxin- producing fungus to develop. the current investigation was carried out to evaluate the quantity and kind of contaminated imported grains and rice generated in the province of Shiraz, Iran. A total of 60 random rice samples were taken from paddy fields in October and November 2020. Aspergillus genera were detected using PCR. HPLC was used to determine the quantity and type of aflatoxin and mycotoxins in samples collected. Irradiation studies were carried out utilizing a collimated beam system with wavelengths ranging from 200 to 360 nm. The quality of rice was assessed using UV light therapy on some of the changed factors, such as amylose content, aroma, and brightness [P < 0.05]. Aspergillus genera were found in 33.3% [20 samples of 60] of rice samples after morphological and molecular analysis of the ITS gene. According to the sequencing experiment, 12 strains [60%] were identified as Aspergillus flavus, whereas 8 strains [40%] were identified as Aspergillus parasiticus. Ver-1 and afl-R genes were positive in 12/12 [100%] Aspergillus flavus and 87.5% in Aspergillus parasiticus. According to the HPLC findings, three Aspergillus parasiticus strains [37.5%] were able to create all four types of aflatoxins, and aflatoxins B1, B2, G1, G2 were produced by 16.6% of Aspergillus flavus strains. Aflatoxin-1 (AFG1) was lowered to 35.1, 48.2, 59.9, and 65.2%, significantly, at doses of 1.22, 2.44, 3.66, and 4.88 Jcm(−2) [P < 0.01]. Furthermore, at doses of 1.22, 2.44, 3.66, and 4.88 Jcm(−2), AFB2 and AFG2 was shown to be reduced by 13.1%, 11.7%, 30.3%, and 28.9%. [P < 0.05]. At a maximum dose of 4.88 Jcm(−2), AFB1 was shown to be extremely susceptible to UV irradiation, with a > 70% decrease seen [P < 0.001]. Our findings imply that UV irradiation with lower energy and lower danger can help minimize aflatoxin contamination in food.