Cargando…
PerHeFed: A general framework of personalized federated learning for heterogeneous convolutional neural networks
In conventional federated learning, each device is restricted to train a network model of the same structure. This greatly hinders the application of federated learning where the data and devices are quite heterogeneous because of their different hardware equipment and communication networks. At the...
Autores principales: | Ma, Le, Liao, YuYing, Zhou, Bin, Xi, Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9743105/ https://www.ncbi.nlm.nih.gov/pubmed/36531189 http://dx.doi.org/10.1007/s11280-022-01119-x |
Ejemplares similares
-
Deep Convolutional Neural Network Used in Single Sample per Person Face Recognition
por: Zeng, Junying, et al.
Publicado: (2018) -
A federated graph neural network framework for privacy-preserving personalization
por: Wu, Chuhan, et al.
Publicado: (2022) -
FedMed: A Federated Learning Framework for Language Modeling
por: Wu, Xing, et al.
Publicado: (2020) -
FedRAD: Heterogeneous Federated Learning via Relational Adaptive Distillation
por: Tang, Jianwu, et al.
Publicado: (2023) -
FedDPGAN: Federated Differentially Private Generative Adversarial Networks Framework for the Detection of COVID-19 Pneumonia
por: Zhang, Longling, et al.
Publicado: (2021)