Cargando…
From 2D projections to the 3D rotation matrix: an attempt for finding a machine learning approach for the efficient evaluation of mechanical joining elements in X-ray computed tomography volume data
Destructive and predominantly manual procedures are commonly used in the automotive industry for the testing of mechanical joints, such as rivets or screws. Combining X-ray computed tomography (CT) and machine learning (ML) bears the potential of a non-destructive and largely automated methodology....
Autores principales: | Schromm, T. M., Grosse, C. U. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9743106/ https://www.ncbi.nlm.nih.gov/pubmed/36530556 http://dx.doi.org/10.1007/s42452-022-05220-8 |
Ejemplares similares
-
Correction of center of rotation and projection angle in synchrotron X-ray computed tomography
por: Cheng, Chang-Chieh, et al.
Publicado: (2018) -
Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles
por: Slater, Thomas J. A., et al.
Publicado: (2016) -
Revelation of microcracks as tooth structural element by X-ray tomography and machine learning
por: Dumbryte, Irma, et al.
Publicado: (2022) -
3D localization from 2D X-ray projection
por: Bertsche, Dagmar, et al.
Publicado: (2022) -
Digitally deconstructing leaves in 3D using X‐ray microcomputed tomography and machine learning
por: Théroux‐Rancourt, Guillaume, et al.
Publicado: (2020)