Cargando…
SC3s: efficient scaling of single cell consensus clustering to millions of cells
BACKGROUND: Today it is possible to profile the transcriptome of individual cells, and a key step in the analysis of these datasets is unsupervised clustering. For very large datasets, efficient algorithms are required to ensure that analyses can be conducted with reasonable time and memory requirem...
Autores principales: | Quah, Fu Xiang, Hemberg, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9743492/ https://www.ncbi.nlm.nih.gov/pubmed/36503522 http://dx.doi.org/10.1186/s12859-022-05085-z |
Ejemplares similares
-
SC3 - consensus clustering of single-cell RNA-Seq data
por: Kiselev, Vladimir Yu., et al.
Publicado: (2017) -
scSTEM: clustering pseudotime ordered single-cell data
por: Song, Qi, et al.
Publicado: (2022) -
Discrete distributional differential expression (D(3)E) - a tool for gene expression analysis of single-cell RNA-seq data
por: Delmans, Mihails, et al.
Publicado: (2016) -
scDIOR: single cell RNA-seq data IO software
por: Feng, Huijian, et al.
Publicado: (2022) -
scClustViz – Single-cell RNAseq cluster assessment and visualization
por: Innes, Brendan T., et al.
Publicado: (2019)